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• The hadron mass changes when placed in a electromagnetic field

• μ - the magnetic dipole

• α & β - the electric & magnetic polarizability

• γ - spin polarizabilities
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Electric polarizability
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• The polarizability measures the dipole moment 
induced by the field

• For proton the polarizabilities are measured in 
Compton scattering experiments and for neutron 
from elastic and quasi-elastic Compton scattering 
on deuteron, neutron on lead, etc. 

• For other hadrons, indirect measurements are 
required. For pions 𝛾𝛾→𝜋+𝜋-(not very good), 
𝛾p→n𝜋+𝛾, 𝜋A→𝜋’𝛾A (Primakoff method).
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Lattice QCD primer
• The basic degrees of freedom are quarks 

and gluons interacting according to 
Quantum Chromodynamics.

• Quark and gluon fields are sampled on a 
discrete lattice: quarks at sites and glue 
on links.

• The action in Euclidean time is 
expressed in terms of the discrete fields.

• For numerical simulations the spatial 
volume and “temporal” extent is finite. 
Lattice spacing is tuned by changing 
interaction strength.

• The calculation is non-perturbative, at 
least in QCD sector.
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Sea and valence fermions
• Hadrons are created using quark composite 

functions.

• Hadron mass is extracted from correlation of 
the composite fields.

• Quark masses can be adjusted independently 
for valence and sea quarks.

• Quenched simulations: sea quarks infinitely 
heavy. Partially quenched: sea and valence quark 
masses are different.

• In lattice simulations quark masses are larger 
than physical ones for numerical reasons.

• Since quark masses are not observable, we use 
pion mass to determine how close we are to the 
physical point.
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Electric field on the lattice



Background field method

• Introduce a background electric field

• The U(1) field Aμ is static

• On the lattice this amounts to changing the links

• The polarizability is extracted from the mass shift

Dµ = �µ � igGµ � iqAµ

Uµ � e�iqaAµUµ
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Extracting polarizability

• To introduce an electric field on the lattice we need to use a real phase factor in 
the exponential form

•  The imaginary phase factor can also be used if we remember to flip the sign

• Magnetic field is introduced using an imaginary phase factor
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AA and F. X. Lee, PoS LATTICE2008 (2008) 145.
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Boundary conditions
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• Lattice QCD is formulated in Euclidean time.

• This requires that the Hamiltonian of the 
system is bounded from below, i.e. there is a 
vacuum state of lowest energy.

• In the presence of a real electric field, the 
vacuum is no longer stable -- Schwinger 
instability against pair creation.

• In a finite volume box we can make the system 
stable by limiting the maximal distance 
between charges.

• We use Dirichlet boundary conditions in space 
to stabilize the system.

• Note that this instability exists even in a finite 
volume box if we use periodic boundary 
conditions.



Dirichlet boundary conditions

p =
�

L

11

20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

Nx
a
m
p

k=0.1567

20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

Nx

a
m
p

k=0.1565

20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

Nx

a
m
p

k=0.1562

20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

Nx

a
m
p

k=0.1546

• Dirichlet boundary conditions are equivalent to 
a hard wall in the direction of the electric field.

• The lowest energy for one-particle states 
corresponds to a non-zero momentum.

• The momentum is related to the size of the box 
and its magnitude decreases slowly with the 
size of the box.

• Finite volume effects are thus expected to be 
important and vanish slowly as we increase the 
size of the system. We can study the infinite 
volume limit by varying the dimension of the 
box only in the field direction.

• Energy shift due to polarizability is corrected 
due to hadron motion: δm = (E/m)δE.
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Compton polarizability
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If we set the polarizabilities to zero in the Lagrangean above and use it 
to compute the energy of a non-relativistic neutron we have

E(~p) =
~p2

2M
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M
) +

µ2

2M
~E2

When using Dirichlet boundary conditions the momentum is aligned 
with the electric field and the second term doesn’t contribute. The last 
term contributes even when the momentum is zero and we have

↵̄ = ↵+
µ2

M

W. Detmold et al, Phys.Rev. D81 (2010) 054502



Numerical results



Lattice parameters
• 243 × 48 nHYP clover ensemble -- pion mass 306MeV

• 300 configurations -- 25 source points per config

• Lattice spacing a=0.1245(16) fm

• 243 × 64 nHYP clover ensemble -- pion mass 227MeV

• 450 configurations -- 18 source points per config

• Lattice spacing a=0.1215(11) fm

• Electric field ~ 1021 V/m - η=a2qE = 0.0001 -- imaginary
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Neutron polarizability
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Neutron polarizability
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Neutron polarizability

• We computed the neutron polarizability using dynamical quark 
backgrounds.

• We find that the presence of the dynamical quarks increases slightly the 
polarizability, but the results are in rough agreement with the ones in 
the quenched study.

• It is clear that our results are not in agreement with χPT expectations: 
at 227 MeV pion mass the compute value is only 60% of the one 
predicted from χPT and more than 3 standard deviations away.

• We identified two possible sources for this discrepancy: finite volume 
effects and neglecting the electric charge of the sea quarks.
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Infinite volume extrapolation
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Infinite volume extrapolation
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Infinite volume extrapolation
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Infinite volume extrapolation
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Future directions



Reweighting

�GE(t)⇥E =
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• We need to “charge” the sea 
quarks

• We use reweighting to exploit 
the correlation between the 
correlators with and without the 
field

• It turns out that standard 
estimators for the reweighting 
factor do not work

• We use a perturbative expansion 
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Neutron polarizability
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Charging the sea quarks
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Conclusions and outlook

26

• We focused on electrical polarizability for neutron as a benchmark calculation.  

• We presented lattice QCD results for pion mass of 227 MeV and 306 MeV.

• After removing finite volume effects, we find that the polarizability rises as we 
approach the physical point at a rate similar to the one predicted by chiral 
perturbation theory.

• We need to include the effects of the electric field on the virtual quark-antiquark 
pairs using better estimators to reduce the errors.

• There are many challenges that need to be addressed as we move to charged 
hadrons, magnetic polarizability, spin polarizabilities, etc.
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Boundary thickness



Dirichlet boundary conditions

p =
�

L
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• Dirichlet boundary conditions are equivalent to 
a hard wall in the direction of the electric field.

• The lowest energy for one-particle states 
corresponds to a non-zero momentum.

• The chiral condensate also vanishes on the 
boundary, but it is expected to get restored to 
its bulk value away from the wall.

• A sigma-model calculation estimated the 
thickness of the region where the condensate is 
perturbed to be sizable.

• Assuming that a sigma particle of mass 440 
MeV saturates the scalar channel, the 
condensate get restored to 90% of its bulk 
value about 1.3 fm away from the wall.
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FIG. 1. The solution ξ as a function of the finite extent L
of the x-direction. Values of L for which ξ ≥ 1 lead to the
vacuum expectation value Σ0(x) = 0, and hence correspond
to a complete restoration of chiral symmetry in the sigma
model.

The concavity of the function Σ0(x) follows from the
analogue of Newton’s second law. The force is given by
F = −dV/dΣ0, with V = −Λ(Σ2

0 − v2)2, and implies

that the values of the field at the turning points, Σ(j)
0 ,

are local minima for j even, and local maxima for j odd.

As a result, we need not consider the turning points Σ(3)
0

and Σ(4)
0 in determining the solution Σ0(x). For exam-

ple, consider a solution which rises from Σ0 = 0 at x = 0.
For this solution to turn over, we need a positive turn-
ing point corresponding to a maximum. The only pos-

sibility is the value Σ(1)
0 . The solution Σ0(x) could then

decrease from the maximum down to a minimum before
rising again, but the only possible turning point that cor-

responds to a minimum with value less than Σ(1)
0 is Σ(2)

0 .

The solution Σ0(x) is necessarily bounded by Σ(1)
0 from

above and Σ(2)
0 from below. There are an infinite num-

ber of solutions which minimize the action. They are
characterized by the number of oscillations between the

extrema Σ(1)
0 and Σ(2)

0 . Because the latter is negative, the
inclusion of a small quark mass term will lead to an en-
ergetic disadvantage for all solutions having any turning

points for which Σ0(x) attains the value Σ(2)
0 .

The solution Σ0(x) we seek can thus be characterized
as monotonically increasing from zero up to the maxi-

mum value Σ(1)
0 , and then monotonically decreasing back

down to zero. The motion of Σ0 is symmetric about the
turning point; consequently, we must have x1 = L/2. In-
tegrating the equation of motion from the boundary to
the turning point (or vice versa), we arrive at the equa-
tion

K

(

1− ξ

1 + ξ

)

=
ℓ

2

√

1 + ξ, (11)

where K(m) is the complete elliptic integral of the first
kind. This is a special case of the incomplete elliptic

integral of the first kind, F(φ |m), defined by

F(φ |m) =

∫ φ

0

dθ
√

1−m sin2 θ
, (12)

namely K(m) = F(π2 |m). Above, we have employed the
abbreviation

ℓ = vL
√
2Λ =

1

2
mσL. (13)

The relation expressed in Eq. (11) implicitly defines the
analogue of the mechanical energy E as a function of
the sigma model parameters and the extent of the x-
direction, i.e. E = E(v,Λ, L). In practice, it is simpler to
work with the dimensionless variable ξ = ξ(v,Λ, L). In
Fig. 1, we plot the value of ξ that satisfies Eq. (11) as a
function of the extent of the compact direction, L. For

L <
π

2v
√
Λ

=

√
2π

mσ
≈ 2.0 fm, (14)

the solution requires ξ ≥ 1 for which the turning point

Σ(1)
0 does not exist, and consequently chiral symmetry is

completely restored in the model.
With the value of ξ determined from Eq. (11), we can

implicitly specify the solution Σ0(x) by integrating the
equation of motion to an arbitrary point x. We find the
solution must satisfy

F

(

sin−1 Σ0

Σ(1)
0

∣

∣

∣

∣

∣

1− ξ

1 + ξ

)

= ℓ
√

1 + ξ

×

{

x
L
, for 0 ≤ x ≤ L

2

1− x
L , for L

2 ≤ x ≤ L
, (15)

with F(φ |m) the incomplete elliptic integral defined
above. Notice the full solution agrees with Eq. (11) at
the turning point.
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FIG. 2. Ratio of the chiral condensate with homogeneous
Dirichlet boundary conditions to the infinite volume chiral
condensate plotted as a function of the x-coordinate scaled
by L. For L < 2.0 fm, the condensate vanishes everywhere,
< ψψ(x) >= 0.
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Chiral condensate
Dirichlet boundary conditions
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Border thickness
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Mesons



Neutral kaon polarizability
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“Neutral Pion”

• The physical π0 correlator has disconnected contributions in the 
presence of a background field

• The disconnected diagrams cancel only in the isospin limit -- the 
electric field breaks isospin symmetry

• Our calculation doesn’t include disconnected contributions

• The particle we study is more like      when u and d have the same 
charge

• In this version of QCD the pions are all uncharged and χPT predicts 
a flat behavior (to leading order).

• The “neutral pion” polarizability is expected to be small and positive.

d̄u

34
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χPT expectations
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FIG. 5: Quark-line topologies generated at one-loop order. Diagrams in the second row contribute
only when the external states are flavor neutral.

sertion. Terms from all of the meson loop diagrams in Figure 3 are required for this delicate
cancellation. As a result, the characteristic factor of ∆Q

2 is absent from Eq. (9). Next, each
of the quark line topologies B, C, and D, require flavor disconnected contributions from
flavor-neutral meson propagators. As flavor neutral mesons are also electrically neutral,
coupling to the photon eliminates such contributions. Indeed looking at Figure 3, there is
only one possible diagram with a hairpin vertex. Direct evaluation shows that this contri-
bution vanishes, ruling out the B, C, and D topologies. Therefore the loop contributions to
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Neutral pion polarizability
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Neutral pion polarizability
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Charged hadrons

lattice QCD

fit model
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Neutron magnetic moment
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