
 

 

LATTICE QUANTUM CHROMODYNAMICS 
 
The strong interactions between quarks and gluons that produce the protons, neutrons, nuclei and 
the other hadrons found in nature are notoriously difficult to unravel. In contrast to electromagnetic 
and weak interactions, the strong interactions behave differently at different energies; quarks and 
gluons are the relevant degrees of freedom at high energies, while composite hadrons emerge at 
low energies. While quantum chromodynamics (QCD) has long been thought to be the theory of 
the strong interactions, direct comparison of its predictions with experiment has historically only 
been possible at high energies where deep inelastic scattering experiments have beautifully 
revealed the quark and gluon substructure of hadrons. In the last decade, this situation has 
changed dramatically and it is now possible to say that we have experimental confirmation of QCD 
at low energies relevant for hadronic and nuclear physics. With decades of research developments 
and advances in high-performance computing, the numerical approach of lattice QCD has matured 
to the stage where many properties of hadrons such as their masses and charge distributions are 
now able to be calculated and compared to experiment, providing new confirmations that QCD 
indeed describes the strong interactions. Having reached this point, the coming decade presents a 
golden opportunity for nuclear physics as further improvements in calculational methods and 
advances in high-performance computing will enable more precise calculations of many quantities 
and provide predictions with controlled uncertainties for as-yet-unmeasured quantities The impact 
of lattice QCD calculations in high energy physics has already been immense, with the 
determinations of most of the parameters of the Standard Model relying heavily on the results of 
lattice QCD calculations. The potential for contributions to the intrinsically more complex world of 
nuclear physics is equally high and investments in this field are now paying off. Beyond confirming 
QCD through comparison with experiment, lattice QCD calculations hold the promise of providing 
reliable calculations of hadronic and nuclear processes in situations where laboratory experiments 
are not possible, it provides guidance to the design of future experiments, and plays an essential 
role in analysis of upcoming experiments.  
 
Lattice QCD provides a rigorous definition of QCD in the low-energy, strong-coupling regime and, 
importantly, provides a numerical method with which to perform QCD calculations. As an 
intermediate step in lattice QCD, one considers a discretized version of QCD defined on a space-
time grid (most simply, a four dimensional hypercubic lattice) so as to make amenable to numerical 
calculations. The quark and gluon degrees 
of freedom are defined on this grid and the 
calculation is performed using Monte Carlo 
methods in which representative 
configurations of the quark and gluon 
degrees of freedom are generated with a 
distribution prescribed by QCD, and 
physical observables are then extracted 
from correlations in these samplings. An 
important feature of lattice QCD 
calculations is that is possible to fully 
quantify the statistical uncertainties from 
the Monte Carlo sampling and the 
systematic uncertainties from the finite 
volume and discretization associated with 
any given quantity. Furthermore, these 
uncertainties can be systematically 
reduced to any prescribed level of 
accuracy, limited only by computational 
resources and the available workforce. 
 
Large-scale lattice QCD calculations require a range of computational platforms. Leadership-class 
(capability) computing platforms are required to generate the representative samplings of the QCD 

  

 

22nd International Spin Symposium,  Urbana-Champaign, Sep 26-30, 2016

William Detmold, MIT

LQCD Structure of Nuclei

1. Magnetic structure of nuclei	
!

II. Axial structure 	
!

III. Nuclear gluonometry



Lattice nuclear structure

NPLQCD collaboration 	

Pioneering the study of nuclei in 
LQCD	

Spectroscopy and binding 
PRD 80 (2009) 074501  
PRL 106 (2011) 162001  
MPLA 26 (2011) 2587-2595  
PRD 85 (2012) 054511  
PRD 87 (2013), 034506  
PRD 91 (2015), 114503 	

Scattering 
PRL. 97 (2006) 012001  
NPA 794 (2007) 62-72  
PRD 81 (2010) 054505  
PRL. 109 (2012) 172001  
PRC 88 (2013), 024003  
PRD 92 (2015),114512    	

Nuclear structure through  
LQCD in presence of  
external fields

Frank WInter	
Jefferson Lab

Nuclear LQCD

NPLQCD Collaboration

S. D. Cohen (U Washington) Nucleus-Onium Bound States 2014 Mar 30 7 / 19

Nuclear LQCD

NPLQCD Collaboration

S. D. Cohen (U Washington) Nucleus-Onium Bound States 2014 Mar 30 7 / 19

Nuclear LQCD

NPLQCD Collaboration

S. D. Cohen (U Washington) Nucleus-Onium Bound States 2014 Mar 30 7 / 19

Nuclear LQCD

NPLQCD Collaboration

S. D. Cohen (U Washington) Nucleus-Onium Bound States 2014 Mar 30 7 / 19

Nuclear LQCD

NPLQCD Collaboration

S. D. Cohen (U Washington) Nucleus-Onium Bound States 2014 Mar 30 7 / 19

Nuclear LQCD

NPLQCD Collaboration

S. D. Cohen (U Washington) Nucleus-Onium Bound States 2014 Mar 30 7 / 19

Brian Tiburzi	
CCNY/RBC

Zohreh Davoudi	
MIT

Silas Beane (UW)                    Emmanuel Chang (INT) 
Zohreh Davoudi (MIT)             William Detmold (MIT)                
Kostas Orginos (WM/JLab)    Assumpta Parreno (Barcelona)  
Martin Savage (INT)                Brian Tiburzi (CCNY/BNL)         
Frank Winter (JLab)                 Michael Wagman (UW) 
Jonas Wilhelm (Geissen)

Past Collaborators
Saul Cohen
Pari Junnarkar
Huey-Wen Lin
Aaron Torok
Tom Luu
Andre Walker-Loud

Mike Wagman	
U. Washington

Phiala Shanahan	
MIT



Spectroscopy

Correlation decays  
exponentially with distance 
 
 
 
at late times 
 

Ground state mass revealed  
through “effective mass plot”

C(t) =

X

n

Zn exp(�Ent)

! Z0 exp(�E0t)

M(t) = ln
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C(t + 1)
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all eigenstates with q#’s of proton



External field method

Hadron/nuclear energies are modified by 
presence of fixed external fields	

Eg: fixed B field 

!

QCD calculations with multiple fields enable 
extraction of coefficients of response	

Magnetic moments, polarisabilities, …	

Not restricted to simple EM fields
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C. Magnetic Field Strength Dependence of Energies

In a constant uniform background magnetic field, the energy eigenvalues of a hadron, h, either
a nucleon or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number
j
z

, are of the form

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|Q
h

eB|� µ
h

·B� 2⇡�(M0)
h

|B|2 � 2⇡�(M2)
h

hT̂
ij

B
i

B
j

i+ ... , (10)

where M
h

is the mass of the hadron, Q
h

is its charge in units of e, and n is the quantum number of
the Landau level that it occupies. For a nucleon or nucleus with spin j � 1

2 , there is a contribution
from the magnetic moment, µ

h

, that is linear in the magnetic field. The magnetic polarizability is

conveniently decomposed into multipoles, with �
h

⌘ �
(M0)
h

denoting the scalar polarizability and

�
(M2)
h

denoting the tensor polarizability (the latter contributes for hadrons with j � 1). T̂
ij

is a
traceless symmetric tensor operator which, when written in terms of angular momentum generators,
is of the form

T̂
ij

=
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2


Ĵ
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Ĵ
j

+ Ĵ
j

Ĵ
i

� 2

3
�
ij

Ĵ2

�
, (11)

and h...i in Eq. (10) denotes its expectation value. 3 The ellipses denote contributions that involve
three or more powers of the magnetic field and terms that are 1/M

h

suppressed. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hE
h

(B)i ⌘ 1

2j + 1

jX

jz=�j

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|QheB| � 2⇡�(M0)
h

|B|2 + ... , (12)

where the ellipsis denotes contributions of O(|B|4) and higher. For spin-j states, the energy
di↵erence between j

z

= ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy
eigenvalues are determined from the appropriate correlation functions, the C

h;jz(t;B) defined in
Eq. (9). The individual correlation functions associated with each state in each magnetic field are
examined, and the time intervals over which they are consistent with single exponential behavior
are determined. Representative correlation functions obtained in the magnetic fields with ñ =
0, 1,�2, 3 are shown in Fig. 1. Having identified these time intervals, the main analysis focuses on
ratios of these correlation functions,

R
h,jz(t;B) =

C
h;jz(t;B)

C
h;jz(t;B = 0)

t!1�! Z
h;jz(B) e��Eh;jz (B)t , (13)

3 For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB
2i =

�
j2z � 1

3 j(j + 1)
�
B2.

This vanishes for both the j = 0 and j = 1
2 states, and is hT̂ijBiBji = 1

3 for the j = 1, jz = ±1 states and

hT̂ijBiBji = � 2
3 for the j = 1, jz = 0 states.
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Magnetic moments of nuclei

Magnetic field in z-direction (strength 
quantised by lattice periodicity)	

Magnetic moments from spin splittings	

!

Extract splittings from ratios of correlation 
functions  

!

Careful to be in single exponential region 
of each correlator
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Background electromagnetic fields have been used ex-
tensively to calculate electromagnetic properties of single
hadrons, such as the magnetic moments of the lowest-
lying baryons [6, 7, 8, 9, 10, 11, 12, 13, 14] and
electromagnetic polarizabilities of mesons and baryons
[9, 12, 15, 16, 17]. In order that the quark fields, with
electric charges Q

u

= +2
3 and Q

d,s

= � 1
3 for the up-,

down- and strange-quarks, respectively, satisfy spatially-
periodic boundary conditions in the presence of a back-
ground magnetic field, it is well-known [18] that the lat-
tice links, U

µ

(x), associated with the U

Q

(1) gauge field
are of the form

U

µ

(x) = e

i

6⇡Q

q

ñ

L

2 x1�

µ,2 ⇥ e

�i

6⇡Q

q

ñ

L

x2�

µ,1�

x1,L�1
, (1)

for quark of flavour q, where ñ must be an integer. The
uniform magnetic field, B, resulting from these links is

eB =
6⇡ñ

L

2
ẑ , (2)

where e is the magnitude of the electric charge and ẑ is
a unit vector in the x3-direction. In physical units, the
background magnetic fields exploited with this ensemble
of gauge-field configurations are e|B| ⇠ 0.046 |ñ| GeV2.
To optimize the re-use of light-quark propagators in the
production, calculations were performed for U

Q

(1) fields
with ñ = 0, 1,�2,+4. Four field strengths were found
to be su�cient for this initial investigation. With three
degenerate flavors of light quarks, and a traceless electric-
charge matrix, there are no contributions from coupling
of the B field to sea quarks at leading order in the elec-
tric charge. Therefore, the magnetic moments presented
here are complete calculations (there are no missing dis-
connected contributions).

The ground-state energy of a non-relativistic hadron
of mass M , and charge Qe in a uniform magnetic field is

E(B) = M +
|QeB|

2M

� µ · B
� 2⇡�

M0 |B|2 � 2⇡�

M2Tij

B

i

B

j

+ ... , (3)

where the ellipses denote terms that are cubic and higher
in the magnetic field, as well as terms that are 1/M

suppressed [19, 20]. The first contribution in eq. (3) is
the hadron’s rest mass, the second is the energy of the
lowest-lying Landau level, the third is from the interac-
tion of its magnetic moment, µ, and the fourth and fifth
terms are from its scalar and quadrupole magnetic polar-
izabilities, �

M0,M2, respectively (T
ij

is a traceless sym-
metric tensor [21]). The magnetic moment term is only
present for particles with spin, and �

M2 is only present
for j � 1. In order to determine µ using lattice QCD
calculations, two-point correlation functions associated
with the hadron or nucleus of interest in the j

z

= ±j

magnetic sub-states, C

(B)
j

z

(t), can be calculated in the
presence of background fields of the form given in Eq. (1)
with strength B = ẑ · B. The energies of ground-states

p

0
2
4
6
8
10
12

�(
�)

n

0

1

2

3

4

�(
�)

d

0

1

2

3

4

�(
�)

3He

0

1

2

3

4

�(
�)

3H

0
2
4
6
8
10
12

�(
�)

0 5 10 15 20
�/�

FIG. 1: The correlator ratios R(B) as a function of time
slice for the various states (p, n, d, 3He, and 3H) for ñ =
+1,�2, +4. Fits to the ratios are also shown.

aligned and anti-aligned with the magnetic field, E

B

±j

,
will be split by spin-dependent interactions, and the dif-
ference, �E

(B) = E

B

+j

� E

B

�j

, can be extracted from the
correlation functions that we consider. The component
of �E

(B) that is linear in B determines µ via Eq. (3).
Explicitly, the energy di↵erence is determined from the
large time behaviour of

R(B) =
C

(B)
j

(t) C

(0)
�j

(t)

C

(B)
�j

(t) C

(0)
j

(t)
t!1�! Ze

��E

(B)
t

. (4)

Each term in this ratio is a correlation function with the
quantum numbers of the nuclear state that is being con-
sidered, which we compute using the methods of Ref. [3].
As discussed in Ref. [14], subtracting the contribution
from the correlation functions calculated in the absence
of a magnetic field reduces fluctuations in the ratio, en-
abling a more precise determination of the magnetic mo-
ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-

�E(B) ⌘ E(B)
+j � E(B)

�j = �2µ|B| + �|B|3 + . . .
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Different B fields



Magnetic moments of nuclei
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ

p

= 1.792(19)(37) NM
(nuclear magnetons) and µ

n

= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2M

N

, where M

N

is the mass
of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µ

p

= 3.119(33)(64)
LNM and µ

n

= �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µ

expt
p

= 2.792847356(23) NM and µ

expt
n

=
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g

A

.
In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
LNM for the deuteron, µ

3He = �2.29(03)(12) LNM for
3He and µ

3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µ
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and µ
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ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µ
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(where
the two protons in the 1s-state are spin paired to j
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as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ
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= 1.792(19)(37) NM
(nuclear magnetons) and µ
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= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
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, where M
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is the mass
of the nucleon at the quark masses of the lattice cal-
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=
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lattice results. In fact, when comparing all available
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in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g
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.
In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
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as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.
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shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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Magnetic Polarisabilities

Second order shifts  
 

Care required with Landau levels	

Polarisabilities (dimensionless units)

7

C. Magnetic Field Strength Dependence of Energies

In a constant uniform background magnetic field, the energy eigenvalues of a hadron, h, either
a nucleon or nucleus, with spin j  1 polarized in the z-direction, with magnetic quantum number
j
z

, are of the form

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|Q
h

eB|� µ
h

·B� 2⇡�(M0)
h

|B|2 � 2⇡�(M2)
h

hT̂
ij

B
i

B
j

i+ ... , (10)

where M
h

is the mass of the hadron, Q
h

is its charge in units of e, and n is the quantum number of
the Landau level that it occupies. For a nucleon or nucleus with spin j � 1

2 , there is a contribution
from the magnetic moment, µ

h

, that is linear in the magnetic field. The magnetic polarizability is

conveniently decomposed into multipoles, with �
h

⌘ �
(M0)
h

denoting the scalar polarizability and

�
(M2)
h

denoting the tensor polarizability (the latter contributes for hadrons with j � 1). T̂
ij

is a
traceless symmetric tensor operator which, when written in terms of angular momentum generators,
is of the form

T̂
ij

=
1

2


Ĵ
i

Ĵ
j

+ Ĵ
j

Ĵ
i

� 2

3
�
ij

Ĵ2

�
, (11)

and h...i in Eq. (10) denotes its expectation value. 3 The ellipses denote contributions that involve
three or more powers of the magnetic field and terms that are 1/M

h

suppressed. The spin-averaged
energy eigenvalues project onto the scalar contributions,

hE
h

(B)i ⌘ 1

2j + 1

jX

jz=�j

E
h;jz(B) =

q
M2

h

+ (2n+ 1)|QheB| � 2⇡�(M0)
h

|B|2 + ... , (12)

where the ellipsis denotes contributions of O(|B|4) and higher. For spin-j states, the energy
di↵erence between j

z

= ±j isolates the magnetic moment at lowest order in the expansion. Other
combinations of the energy eigenvalues of the individual spin components can be formed to isolate
higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each
value of the magnetic field strength. In order to determine the magnetic polarizabilities, energy
eigenvalues are determined from the appropriate correlation functions, the C

h;jz(t;B) defined in
Eq. (9). The individual correlation functions associated with each state in each magnetic field are
examined, and the time intervals over which they are consistent with single exponential behavior
are determined. Representative correlation functions obtained in the magnetic fields with ñ =
0, 1,�2, 3 are shown in Fig. 1. Having identified these time intervals, the main analysis focuses on
ratios of these correlation functions,

R
h,jz(t;B) =

C
h;jz(t;B)

C
h;jz(t;B = 0)

t!1�! Z
h;jz(B) e��Eh;jz (B)t , (13)

3 For a magnetic field aligned in the z-direction, it follows that hT̂ijBiBji = hT̂zzB
2i =

�
j2z � 1

3 j(j + 1)
�
B2.

This vanishes for both the j = 0 and j = 1
2 states, and is hT̂ijBiBji = 1

3 for the j = 1, jz = ±1 states and

hT̂ijBiBji = � 2
3 for the j = 1, jz = 0 states.
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Anticipated Progress

42

• Lighter pion masses
•  groups already at physical point

• Higher precision
• needed at all masses

• Multi-nucleon forces

• P-shell and SD-shell nuclei

• Matrix elements

Axial-Current Matrix Elements
Mπ ~ 800 MeV

3S1 - 1S0 Mixing

Extract the correlated two-nucleon 
interaction with axial field : L1A

(aka - meson-exchange currents)Preliminary

Axial matrix elements

Background field approach to other cases	

Axial coupling to NN system	

pp fusion: “Calibrate the sun” 	

Muon capture: MuSun @ PSI	

d ν → n n e+ : SNO 	

Quadrupole moments	

Axial form factors	

Scalar matrix elements

External weak field strength
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Double Helicity Flip Gluon Structure Function: �(x,Q2)

Double helicity flip amplitude:
Photon helicity
Target helicity
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Double Helicity Flip Gluon Structure

Targets with J≥1, additional leading twist gluon parton 
distribution Δ(x,Q2): double helicity flip [Jaffe & Manohar 1989] 
 
 
 
 
 

Unambiguously gluonic: no analogous quark PDF at twist-2	

Vanishes in nucleon: nonzero value in  nucleus probes nuclear 
effects directly	

Experimentally measurable (NH4 JLab  LoI 2015, polarised 
nuclei at EIC?)	

Moments calculable in LQCD

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Double helicity flip amplitude:
Photon helicity
Target helicity
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Double Helicity Flip Gluon Structure

Moments 	

!

!

Determined by matrix elements of local gluonic operators  
 
 
 
 

Symmetrised and trace subtracted in µ1… µn 	

Clean mixing pattern in hypercubic group

Z 1

0
dx x

n�1�(x,Q2) =
↵s(Q2)

3⇡(n+ 2)
An(Q

2) n = 2, 4, . . .

hp,E0|S[Gµµ1

$
Dµ3 . . .

$
Dµn G⌫µ2 ]|p,Ei

= (�2i)n�2S[{(pµE0⇤
µ1

� pµ1E
0⇤
µ )(p⌫E

0⇤
µ2

� pµ2E
0⇤
⌫ )

+(µ $ ⌫)}pµ3 . . . pµn ]An(Q
2)



Double Helicity Flip Gluon Structure

First LQCD calculation [WD & P Shanahan PRD 94 (2016), 014507]	

First moment in ϕ meson (simplest spin-1 system, nuclei 
eventually)	

Lattice details: clover fermions, Lüscher-Weisz gauge action  
 
 
 
 
 
 

Many systematics not addressed!: a→0, L→∞, mphys	

Renormalisation also ignored at present

Lattice Details
Luscher-Weisz gauge action with a clover-improved quark action

L/a T/a � aml ams

24 64 6.1 -0.2800 -0.2450

a (fm) L (fm) T (fm) m⇡ (MeV) mK (MeV)

0.1167(16) 2.801(29) 7.469(77) 450(5) 596(6)

m� (MeV) m⇡L m⇡T Ncfg Nsrc

1040(3) 6.390 17.04 1042 105

All � polarization states ({1, 2, 3} or {+,�, 0})
I on-diagonal
I o↵-diagonal

Momenta up to (1,1,1) in lattice units (1 unit ⇠ 0.4GeV)

Di↵erent discretisations of the operator (di↵erent irreps.)
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Double Helicity Flip Gluon Structure

Extract matrix element from ratio of correlators 
 
 
 
 
 
 
 
 

Study for all polarisation combinations	

Momenta up to (1,1,1)	

Different lattice irreps (different discretised operators)

0 𝜏 t

C3(t, ⌧) =

0 t

C2(t) =

C3(t, ⌧)

C2(t)
/ A2, 0 ⌧ ⌧ ⌧ t



Double Helicity Flip Gluon Structure
Extraction of A2: 3pt/2pt ratio
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Double Helicity Flip Gluon Structure

UNRENORMALISED reduced matrix element: � meson
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Different Irreps.

Different basis vectors

Boost of � (not mtm transfer)



Gluonic Soffer bound

Soffer bound on quark transversity  
 

Moment space 
 

Saturated at ~80% from LQCD [Diehl et al. 2005]	

Gluonic analogue  
 

|�q(x)|  1

2
(q(x) +�q(x))

hx2i�q  1

2
(hx2iq + hx2i�q)

A2  1

2
(B2 + 0)

So↵er bound analogue

Explore gluon structure of � meson more generally

So↵er bound for transversity quark distributions:

Direct analogue for leading moments of gluon distributions:
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Gluonic Soffer bound
UNRENORMALISED reduced matrix element: � meson
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Gluonic Soffer bound

Gluonic bound satisfied similarly	

!

!

!

!

!

!

CAUTION: bare matrix elements!!	

All for ϕ meson: next step is deuteron

A2  1

2
(B2 + 0)

So↵er bound analogue

Explore gluon structure of � meson more generally

So↵er bound for transversity quark distributions:

Direct analogue for leading moments of gluon distributions:
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Nuclear physics from the ground up

Nuclei are under serious study directly from QCD	

Prospect of a quantitative connection to QCD  
makes this a very exciting time for nuclear physics	

Spectroscopy of light nuclei and exotic nuclei (strange, 
charmed, …)	

Structure: magnetic moments and polarisabilities	

Electroweak interactions: thermal capture cross-section	

Gluonic structure on the horizon



fin



Nuclear sigma terms

One possible DM interaction is through scalar exchange 	

!

Direct detection depends on nuclear matrix element 
 

Accessible via Feynman-Hellman theorem 	

At hadronic/nuclear level 
 

Contributions:

L =
GF

2

X

q

a(q)
S (��)(q q)

Lagrange density in Eq. (2) matches onto

L ! GF ��
✓

1

4
h0|qq|0i Tr

h
aS⌃

† + a†S⌃
i
+

1

4
hN |qq|NiN †NTr

h
aS⌃

† + a†S⌃
i

� 1

4
hN |q⌧ 3q|Ni

⇣
N †NTr

h
aS⌃

† + a†S⌃
i
� 4N †aS,⇠N

⌘
+ ...

◆
(3)

at the chiral symmetry breaking scale ⇤�, which describes the single-hadron matrix elements
and the associated interactions at LO in the chiral expansion. ⌃ is the exponentiated pion
field, and N is the nucleon field,

⌃ = exp

 
2i

f⇡
M

!

, M =

 
⇡0/

p
2 ⇡+

⇡� �⇡0/
p
2

!

, N =

 
p
n

!

, (4)

f⇡ = 132 MeV is the pion decay constant, aS,⇠ =
1
2

⇣
⇠†aS⇠† + ⇠a†S⇠

⌘
with ⇠ =

p
⌃, and the

ellipsis denotes higher-order interactions including those involving more than one nucleon.
Expanding Eq. (3) in the number of pion fields (neglecting the shift in the WIMP mass
induced by the chiral condensate), the LO contributions to the interactions are

L ! GF ��

 

� (a(u)S + a(d)S )

f 2
⇡

h0|qq|0i
✓
1

2
(⇡0)2 + ⇡+⇡�

◆
+

1

2
(a(u)S + a(d)S )hN |qq|NiN †N

+
1

2
(a(u)S � a(d)S )hN |q⌧ 3q|NiN †⌧ 3N + ...

!

. (5)

Matching onto the multi-nucleon interactions is complicated by the fact that contributions
from pion-exchange interactions and from local four-nucleon operators are of the same order
in the chiral expansion, and the coe�cients of the latter are not directly related to multi-
nucleon matrix elements at any order in the chiral expansion. For instance, the four-nucleon
operators involving one insertion of the light-quark mass matrix are of the form [13–15]

LN4,mq = DS,1

⇣
N †N

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DS,2N

†NN †mq,⇠+N

+ DT,1

⇣
N †�aN

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DT,2N

†�aNN †�amq,⇠+N (6)

in the low-energy EFT, where mq,⇠+ = 1
2

⇣
⇠†mq⇠† + ⇠m†

q⇠
⌘
, and �a are the Pauli matrices.

Hence WIMP–two-nucleon interactions are of the form

LN4,� = �GF��
✓
DS,1

⇣
N †N

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DS,2N

†NN †aS,⇠N

+DT,1

⇣
N †�aN

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DT,2N

†�aNN †�aaS,⇠N
◆

. (7)

The importance of the various contributions to the scalar-isoscalar matrix elements can be
estimated using power counting arguments. The second and third terms in Eq. (5) provide
the leading (order Q0, where Q denotes the small ratio of scales in the e↵ective theory) scalar
interactions between the WIMP and the nucleon that generate the impulse approximation
for WIMP-nucleus interactions (see Fig. 1 (left)). In a nucleus, the first term in Eq. (5) gives
rise to a MEC between two nucleons, as shown in Fig. 1 (middle), that naively contributes
at order 1/Q2 in the chiral expansion due to the non-derivative interaction of the pions,

4

which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
1 + O

⇣
m2

⇡

⌘ i m⇡

2

d

dm⇡
E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
⇡

h
1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
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Nucleon sigma term

Single nucleon contribution  
 
 
 
calculated by many lattice 
groups	

Results stabilised	

Interesting ~3σ tension with 
recent πN dispersive analysis  
[Hoferichter et al, PRL. 115 (2015) 092301] 
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Figure 4. Comparison of some of the lattice results for the sigma terms over the last
two decades. Only results which include some attempt at chiral extrapolation (using
any formalism), or were simulated at the physical point directly, are shown. Red, blue
and purple colours denote direct, Feynman-Hellmann and hybrid approaches, while the
green points are from early Nf = 0 calculations. Squares, circles and upward triangles
denote Nf = 2, 2+1 and 2+1+1 studies. Results are from Refs. [143] (RQCD), [144]
(ETM), [138, 145] (BMW), [139, 146] (�QCD), [147] (Ren et al.), [148] (ETM), [149]
(Lutz et al.), [42] (Shanahan et al.), [150–152] (JLQCD), [153] (Junnarkar et al.), [154]
(MILC), [155] (Semke et al.), [156] (Engelhardt), [142,157] (QCDSF), [158] (Young &
Thomas), [159] (SESAM), [160] (Dong et al.), [161] (Fukugita et al.), [162] (Alvarez-
Ruso et al.), [163] (Procura et al), [164] (Leinweber et al.).

4.2. The proton-neutron mass di↵erence

Charge symmetry violation (CSV) in the nucleon mass is small—the neutron-proton

mass di↵erence is one part in a thousand. The e↵ects of this small CSV, however,

are of tremendous significance; it is precisely this which ensures that the hydrogen

atom is stable against weak decay and that neutrons can decay into protons (plus

electrons and antineutrinos) in radioactive beta decay. While the total proton-neutron

mass di↵erence is known extremely precisely from experiments [97], its decomposition

into strong and electromagnetic contributions is less well known. In recent years

there has been considerable e↵ort invested in lattice-based determinations of both the

QCD contribution to the baryon mass splittings [165–170] and the electromagnetic

contribution [171–175]. However, 1 + 1 + 1–flavour simulations—at this stage the only

way to directly probe the full flavor-dependence of QCD observables—are not yet widely

available (the first set of 1 + 1 + 1 + 1–flavour ensembles has recently appeared [176]).

Such studies are of particular interest in the light of recent results which suggest that

the accepted value for the electromagnetic contribution to the neutron-proton mass

di↵erence calculated using the Cottingham formula may be too small because of an

omission in the traditional analysis [177,178].

In this review focused on the ChEFT–lattice-QCD connection we concentrate not
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and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
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Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
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[P Shanahan 2016]

us analyze Σd in the formalism from [291, 292]

Σd = F2π
{
4π

(
1 + Mπ

mN

)
a+0+ +

g2M2
π

mN
(
4m2N − M2

π

) − J+ + 2M2
π

[
6π

(
1 + Mπ

mN

)
a+1+ −

g2

Mπ(2mN − Mπ)2
− J̃+

]}
,

J+ =
M2
π

π

∞∫

0

d|q′|
σtotπ−p(|q

′|) + σtotπ+p(|q
′|)

M2
π + q′2

,

J̃+ =
2M2

π

π
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Mπ

dω′ Im E+(ω′)
ω′(ω′2 − M2

π)
+

1
2πmN

∞∫

Mπ

dω′ImD+(ω′)
( 1
ω′2
−

1
(ω′ + Mπ)2

)

−
1

2πmN

∞∫

Mπ

dω′Im B+(ω′)
( 1
ω′
−

1
ω′ + Mπ

)
, (9.21)

where ω =
√
q2 + M2

π , s = m2N + M
2
π + 2mNω, and

D+(ω) =
[
A+ + ωB+

]
s=s(ω),t=0 , E+(ω) =

[
∂

∂t
(
A+(s, t) + ωB+(s, t)

)
]

s=s(ω),t=0
. (9.22)

Accordingly, there is a direct connection between J+ and cross-section data,15 whereas J̃+ requires a PWA. Using
J+ = (1.459± 0.005)M−1π from [344], a+0+ = (−0.9± 1.4)× 10

−3M−1π from (6.29), a+1+ = (131.2± 1.7)× 10
−3M−3π from

Table 6, and g2/(4π) = 13.7± 0.2 as before, the only missing ingredient is J̃+. Adopting a value of (−70.5± 1.5)MeV
for its contribution to Σd (to cover the two evaluations given in [293]), we find Σd = (59.2 ± 5.2)MeV, in excellent
agreement with the RS result, but considerably less precise. In the end, the difference originates almost exclusively
from a+1+ = 133 × 10

−3M−3π as used in [293]. Keeping the rest of the input fixed but increasing a+1+ accordingly,
the central value indeed increases to Σd = 64MeV. This comparison shows that the decomposition (9.21) is much
more sensitive to a+1+ than previously appreciated, already the rather precise prediction from the RS solution amounts
to an uncertainty of 5MeV in the σ-term. To obtain a result comparable to (9.20), a+1+ would need to be known at
sub-percent accuracy. The elimination of the need for independent input for a+1+ thus constitutes the main advantage
of the RS approach.

In conclusion, the final result [114]
σπN = (59.1 ± 3.5)MeV (9.23)

does amount to a significant increase compared to the “canonical value” of σπN ∼ 45MeV, although already 4.2MeV
are due to new corrections to the LET (and thereof 3.0MeV from isospin breaking). The remaining increase of nearly
10MeV is dictated by experiment: the new scattering lengths from pionic atoms determine the position of the σ-term
on the curve approximately described by (9.19).

The σ-term has also been extracted from πN scattering phase shifts using ChPT at one loop [20, 24, 308], partly
finding central values that are well compatible with (9.23). In such analyses, the LECs of the chiral representation
are fixed from fits to various PWAs, and chiral LETs used subsequently to determine the σ-term. All the (dispersive)
relations that constitute the Cheng–Dashen LET used in the extraction from the RS solution are fulfilled by the
chiral representation, too, albeit only in a perturbative way. In particular, one implicitly needs to extrapolate from
the physical s-channel to the subthreshold region; we will comment on this relation in Sect. 10.2. Based on the
analysis performed up to here, we point out that the chiral one-loop representation is likely problematic for a precision
determination of the σ-term. It is well-known that it does not provide sufficient curvature to the scalar form factor of
the nucleon [93]; similarly, the quantity ∆D is severely underestimated [23]. Therefore, the one-loop representation of
the πN scattering amplitude does not describe the subthreshold region very accurately: the extraction of the σ-term is
enabled only by the large cancellation in ∆D − ∆σ as described above. Furthermore, we have explained in Sect. 7.1
how t-channel D-waves including the f2(1270) resonance are an essential ingredient to a consistent solution of the RS

15The analogous integral J− of the cross-section difference becomes relevant for the evaluation of the GMO sum rule [257, 343].
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(two-flavor) nuclear �-term can be written as

�Z,N = A�N + �BZ,N = A�N � m⇡

2

d

dm⇡
BZ,N , (11)

where

�N = mhN | uu + dd |Ni = m
d

dm
MN =

m⇡

2

d

dm⇡
MN (12)

is the nucleon �-term and |Ni is the single-nucleon state. The first term in Eq. (11) is the
noninteracting single-nucleon contribution to the nuclear �-term, while the second term cor-
responds to the corrections due to interactions between the nucleons, including the possibly
enhanced contributions from MECs. It is useful to define the ratio

��Z,N = � 1

A�N

m⇡

2

d

dm⇡
BZ,N (13)

to quantify the deviations from the impulse approximation. In addition to representing de-
viations of nuclear �-terms from the impulse approximation, this quantity also describes the
deviation of the scalar-isoscalar WIMP-nucleus scattering matrix element from the impulse
approximation at zero momentum transfer,

��Z,N =
hZ,N(gs)| uu + dd|Z,N(gs)i

A hN | uu + dd|Ni � 1 . (14)

III. LIGHT NUCLEI FROM LATTICE QCD AND THEIR �-TERMS

Lattice QCD has evolved to the stage where the binding energies of the lightest nuclei and
hypernuclei have been determined at a small number of relatively heavy pion masses in the
limit of isospin symmetry. Further, the mass of the nucleon has been explored extensively
over a large range of light-quark masses, with calculations now being performed at the phys-
ical value of the pion mass. These sets of calculations, along with the experimental values
of the masses of the light nuclei, are su�cient to arrive at a first QCD determination of the
nuclear �-terms for these nuclei at a small number of pion masses. This work provides an es-
timate of the modifications to the impulse approximation for scalar-isoscalar WIMP-nucleus
interactions in light nuclei2. In particular, these results can be used to explore the conjec-
tured enhancement of MEC contributions to these interactions, and to investigate the size of
the uncertainties introduced by the use of the impulse approximation in phenomenological
analyses.

The binding energies of the deuteron, 3He and 4He at pion masses of m⇡ ⇠ 390, 510
and 806 MeV calculated with lattice QCD [36–38, 54, 55] are presented in Table I, along
with their values at the physical point, and are shown in Fig. 2. The binding energies
per nucleon are shown in Fig. 3. The lattice QCD calculations were performed with clover-
improved discretizations of the quark fields. The m⇡ ⇠ 806 MeV calculations were performed

2 The EFT description of the quark-mass dependence of the nuclear forces has been developed in Refs. [45–
48]. For estimates of nuclear � terms, see Refs. [49–53].
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which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
1 + O

⇣
m2

⇡

⌘ i m⇡

2

d

dm⇡
E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
⇡

h
1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
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to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
between m2

⇡ and m is found to hold to better than 10% over a large range of pion masses,
even for the heavy pion masses that we consider [44, 45]. We use this linear relationship

in constructing nucleon and nuclear � terms, �Z,N = m⇡
2

d
dm⇡

E(gs)
Z,N , and assign a conservative

10% uncertainty in order to account for the nonlinearity in the GMOR relation (note that
this uncertainty will later cancel when we take the ratio of �-terms below).
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