

1. Magnetic structure of nuclei

II. Axial structure

III. Nuclear gluonometry

William Detmold, MIT

Lattice nuclear structure

- NPLQCD collaboration
- Pioneering the study of nuclei in LQCD
 - Spectroscopy and binding PRD 80 (2009) 074501 PRL 106 (2011) 162001 MPLA 26 (2011) 2587-2595 PRD 85 (2012) 054511 PRD 87 (2013), 034506 PRD 91 (2015), 114503
 - Scattering PRL. 97 (2006) 012001 NPA 794 (2007) 62-72 PRD 81 (2010) 054505 PRL. 109 (2012) 172001 PRC 88 (2013), 024003 PRD 92 (2015),114512
- Nuclear structure through LQCD in presence of external fields

Frank WInter Jefferson Lab

Silas Beane U. Washingtor

Emmanuel Chan U. Washington

Zohreh Davoudi MIT

Brian Tiburzi

CCNY/RBC

Martin Savage U. Washington

Will Detmold MIT

Assumpta Parreno Barcelona

Kostas Orginos William & Mary

Mike Wagman U.Washington

Phiala Shanahan MIT

Spectroscopy

 Correlation decays exponentially with distance

$$C(t) = \sum_{n} Z_n \exp(-E_n t)$$

all eigenstates with q#'s of proton at late times n_{\star}

$$\rightarrow Z_0 \exp(-E_0 t)$$

Ground state mass revealed through "effective mass plot"

$$M(t) = \ln \left[\frac{C(t)}{C(t+1)} \right] \stackrel{t \to \infty}{\longrightarrow} E_0$$

External field method

- Hadron/nuclear energies are modified by presence of fixed external fields
- Eg: fixed B field

$$E_{h;j_z}(\mathbf{B}) = \sqrt{M_h^2 + (2n+1)|Q_h eB|} - \mu_h \cdot \mathbf{B}$$
$$-2\pi \beta_h^{(M0)} |\mathbf{B}|^2 - 2\pi \beta_h^{(M2)} \langle \hat{T}_{ij} B_i B_j \rangle + \dots$$

- QCD calculations with multiple fields enable extraction of coefficients of response
 - Magnetic moments, polarisabilities, ...
- Not restricted to simple EM fields

Magnetic moments of nuclei

- Magnetic field in z-direction (strength quantised by lattice periodicity)
- Magnetic moments from spin splittings

$$\delta E^{(B)} \equiv E_{+j}^{(B)} - E_{-j}^{(B)} = -2\mu |\mathbf{B}| + \gamma |\mathbf{B}|^3 + \dots$$

 Extract splittings from ratios of correlation functions

$$R(B) = \frac{C_j^{(B)}(t) \ C_{-j}^{(0)}(t)}{C_{-j}^{(B)}(t) \ C_j^{(0)}(t)} \xrightarrow{t \to \infty} Ze^{-\delta E^{(B)}t}$$

 Careful to be in single exponential region of each correlator

Magnetic moments of nuclei

In units of appropriate nuclear magnetons (heavy M_N) [NPLQCD PRL **113**, 252001 (2014)]

Magnetic moments of nuclei

- Numerical values are surprisingly interesting
- Shell model expectations

$$\mu_d = \mu_p + \mu_n$$

$$\mu_{^3\mathrm{H}} = \mu_p$$

$$\mu_{^3\mathrm{He}} = \mu_n$$

Lattice results appear to suggest heavy quark nuclei are shell-model like!

	n	р	d	3	3
μ	-1.98(1)(2)	3.21(3)(6)	1.22(4)(9)	-2.29(3)(12)	3.56(5)(18)

In units of appropriate nuclear magnetons (heavy M_N) [NPLQCD PRL **113**, 252001 (2014)]

Magnetic Polarisabilities

[NPLQCD Phys.Rev. D92 (2015), 114502]

Second order shifts

$$E_{h;j_z}(\mathbf{B}) = \sqrt{M_h^2 + (2n+1)|Q_h eB|} - \mu_h \cdot \mathbf{B}$$
$$-2\pi \beta_h^{(M0)} |\mathbf{B}|^2 - 2\pi \beta_h^{(M2)} \langle \hat{T}_{ij} B_i B_j \rangle + \dots$$

- Care required with Landau levels
- Polarisabilities (dimensionless units)

Axial matrix elements

- Background field approach to other cases
- Axial coupling to NN system
 - pp fusion: "Calibrate the sun"
 - Muon capture: MuSun @ PSI
 - $d\nu \rightarrow nne^+:SNO$
- Quadrupole moments
- Axial form factors
- Scalar matrix elements

Exotic glue in nuclei

Exotic glue in nuclei

WD, <u>Phiala Shanahan</u> PRD94 (2016), 014507

Exotic glue in nuclei

- Key goals of EIC
 - Gluonic structure
 - Nuclei

Exotic glue in nuclei

- Key goals of EIC
 - Gluonic structure
 - Nuclei
- **WANTED:** well defined gluonic observables for nuclei
 - Exotic glue: gluons not associated with individual nucleons in nucleus

$$\langle p|\mathcal{O}|p\rangle = 0$$

$$\langle N, Z | \mathcal{O} | N, Z \rangle \neq 0$$

■ Targets with $J \ge I$, additional leading twist gluon parton distribution $\Delta(x,Q^2)$: double helicity flip [Jaffe & Manohar 1989]

- Unambiguously gluonic: no analogous quark PDF at twist-2
- Vanishes in nucleon: nonzero value in nucleus probes nuclear effects directly
- Experimentally measurable (NH₄ JLab Lol 2015, polarised nuclei at EIC?)
- Moments calculable in LQCD

Moments

$$\int_0^1 dx \ x^{n-1} \Delta(x, Q^2) = \frac{\alpha_s(Q^2)}{3\pi(n+2)} A_n(Q^2) \qquad n = 2, 4, \dots$$

Determined by matrix elements of local gluonic operators

$$\langle p, E' | \mathcal{S}[G_{\mu\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{3}} \dots \stackrel{\leftrightarrow}{D}_{\mu_{n}} G_{\nu\mu_{2}}] | p, E \rangle$$

$$= (-2i)^{n-2} \mathcal{S}[\{(p_{\mu}E'^{*}_{\mu_{1}} - p_{\mu_{1}}E'^{*}_{\mu})(p_{\nu}E'^{*}_{\mu_{2}} - p_{\mu_{2}}E'^{*}_{\nu}) + (\mu \leftrightarrow \nu)\}p_{\mu_{3}} \dots p_{\mu_{n}}] A_{n}(Q^{2})$$

- Symmetrised and trace subtracted in $\mu_1...\mu_n$
- Clean mixing pattern in hypercubic group

- First LQCD calculation [WD & P Shanahan PRD 94 (2016), 014507]
- First moment in ϕ meson (simplest spin-1 system, nuclei eventually)
- Lattice details: clover fermions, Lüscher-Weisz gauge action

L/a	T/a	β	am_l	am_s
24	64	6.1	-0.2800	-0.2450
a (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)
m_ϕ (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{ m cfg}$	$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- Many systematics not addressed!: $a\rightarrow 0$, $L\rightarrow \infty$, m_{phys}
- Renormalisation also ignored at present

Extract matrix element from ratio of correlators

$$\frac{C_3(t,\tau)}{C_2(t)} \propto A_2, \qquad 0 \ll \tau \ll t$$

- Study for all polarisation combinations
- Momenta up to (I,I,I)
- Different lattice irreps (different discretised operators)

Gluonic Soffer bound

Soffer bound on quark transversity

$$|\delta q(x)| \le \frac{1}{2}(q(x) + \Delta q(x))$$

Moment space

$$\langle x^2 \rangle_{\delta q} \le \frac{1}{2} (\langle x^2 \rangle_q + \langle x^2 \rangle_{\Delta q})$$

- Saturated at ~80% from LQCD [Diehl et al. 2005]
- Gluonic analogue

$$A_{2} \leq \frac{1}{2}(B_{2} + 0)$$

$$G_{\mu\mu_{1}}G_{\nu\mu_{2}}$$

$$\widetilde{G}_{\mu_{1}\alpha}G_{\mu_{2}}^{\alpha} \xrightarrow{\widetilde{G}_{\mu_{1}\alpha}G_{\mu_{2}}^{\alpha}} \to 0$$

Gluonic Soffer bound

Gluonic Soffer bound

Gluonic bound satisfied similarly

$$0.2 \le \frac{1}{2}0.6$$

- CAUTION: bare matrix elements!!
- \blacksquare All for φ meson: next step is deuteron

Nuclear physics from the ground up

- Nuclei are under serious study directly from QCD
- Prospect of a quantitative connection to QCD makes this a very exciting time for nuclear physics
 - Spectroscopy of light nuclei and exotic nuclei (strange, charmed, ...)
 - Structure: magnetic moments and polarisabilities
 - Electroweak interactions: thermal capture cross-
 - Gluonic structure on the horizon

Nuclear sigma terms

One possible DM interaction is through scalar exchange

$$\mathcal{L} = \frac{G_F}{2} \sum a_S^{(q)}(\overline{\chi} \chi)(\overline{q} q)$$

Direct detection depends on nuclear matrix element

$$\sigma_{Z,N} = \overline{m}\langle Z, N(gs)| \overline{u}u + \overline{d}d | Z, N(gs) \rangle = \overline{m} \frac{d}{d\overline{m}} E_{Z,N}^{(gs)}$$

- Accessible via Feynman-Hellman theorem
- At hadronic/nuclear level

$$\mathcal{L} \to G_F \,\overline{\chi}\chi \,\left(\frac{1}{4}\langle 0|\overline{q}q|0\rangle \,\operatorname{Tr}\left[a_S\Sigma^{\dagger} + a_S^{\dagger}\Sigma\right] + \frac{1}{4}\langle N|\overline{q}q|N\rangle N^{\dagger}N\operatorname{Tr}\left[a_S\Sigma^{\dagger} + a_S^{\dagger}\Sigma\right] - \frac{1}{4}\langle N|\overline{q}\tau^3q|N\rangle \left(N^{\dagger}N\operatorname{Tr}\left[a_S\Sigma^{\dagger} + a_S^{\dagger}\Sigma\right] - 4N^{\dagger}a_{S,\xi}N\right) + \ldots\right)$$

Contributions:

Nucleon sigma term

Single nucleon contribution

calculated by many lattice groups

- Results stabilised
- Interesting $\sim 3\sigma$ tension with recent πN dispersive analysis

[Hoferichter et al, PRL. **I 15** (2015) 092301]

$$\sigma_{\pi N} = (59.1 \pm 3.5) \,\text{MeV}$$

Nuclear sigma terms

 Previous work suggested scalar dark matter couplings to nuclei have O(50%) uncertainty arising from MECs [Prezeau et al 2003]

 Quark mass dependence of nuclear binding energies bounds such contributions

$$\delta\sigma_{Z,N} = \frac{\langle Z, N(gs) | \overline{u}u + \overline{d}d | Z, N(gs) \rangle}{A \langle N | \overline{u}u + \overline{d}d | N \rangle} - 1 = -\frac{1}{A\sigma_N} \frac{m_\pi}{2} \frac{d}{dm_\pi} B_{Z,N}$$

Lattice calculations + physical point access this [NPLQCD, PRD **89** (2014) 074505]

Nuclear sigma terms

$$\sigma_{Z,N} = A\sigma_N + \sigma_{B_{Z,N}}$$

$$= A\sigma_N - \frac{m_\pi}{2} \frac{d}{dm_\pi} B_{Z,N}$$
 crudely evaluate as finite difference

Shift from coherent nucleon

$$\delta\sigma_{Z,N} = \frac{\langle Z, N(gs) | \overline{u}u + \overline{d}d | Z, N(gs) \rangle}{A \langle N | \overline{u}u + \overline{d}d | N \rangle} - 1$$

$$= -\frac{1}{A\sigma_N} \frac{m_\pi}{2} \frac{d}{dm_\pi} B_{Z,N}$$

O(10%) at most

