Pisconnected u, d, s - Quarks Contribution to Nucleon Magnetic Moment and Charge Radii

Raza Sabbir Sufian

&

Yi-Bo Yang, Andrei Alexandru, Terrence Draper, Jian Liang, and Keh-Fei Liu
University of Kentucky

Overview

- * Motivation for calculating disconnected quark contribution to electromagnetic form factors (EMFF) in the nucleon
- * Theory and experiment Results
- * Results: Disconnected u,d,s quarks contribution to nucleon magnetic moment and charge radii

Theory & Experiment (Strange EMFF)

Zel'dovich (1957): EM interaction with parity violation

$$\mathcal{M}_{\gamma} = -rac{4\pilpha}{Q^2}e_il^{\mu}J_{\mu}^{\gamma}$$
 $\mathcal{M}_{Z} = rac{G_F}{2\sqrt{2}}\left(g_V^il^{\mu} + g_A^il^{\mu 5}
ight)\left(J_{\mu}^Z + +J_{\mu 5}^Z
ight)$

Kaplan, Manohar (88), Mckeown and Beck (89): Strange EMFFs can be measured through parity violating e-N scattering

$$A_{PV}^{p} = -\frac{G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} \frac{1}{[\epsilon(G_{E}^{p})^{2} + \tau(G_{M}^{p})^{2}]} \times \{(\epsilon(G_{E}^{p})^{2} + \tau(G_{M}^{p})^{2})(1 - 4\sin^{2}\theta_{W})(1 + R_{V}^{p}) - (\epsilon G_{E}^{p}G_{E}^{n} + \tau G_{M}^{p}G_{M}^{n})(1 + R_{V}^{n}) - (\epsilon G_{E}^{p}G_{E}^{s} + \tau G_{M}^{p}G_{M}^{s})(1 + R_{V}^{(0)}) - \epsilon'(1 - 4\sin^{2}\theta_{W})G_{M}^{p}G_{A}^{e}\},$$
(

Can be directly calculated in Lattice QCD

Experiments and Lattice Calculations

EXPERIMENTS: SAMPLE, HAPPEX, G0, A4

Global fit to experimental data

Experimental EMFF - Lattice QCD connected EMFF

arXiv:1609.05937 [hep-ph]
RSS, Yang, Alexandru, Draper, Liang, Liu

Proton Charge Radius

Randolf Pohl, et. al. 2010, 2013, 2016

*No presently available Lattice calculation include disconnected u,d,s quark contribution

- *Disconnected quark contribution to proton charge radius is found negative
 - * Indicates a shift towards muonic hydrogen Lamb-shift experimental data

This work: Overlap fermion on RBC & UKQCD DWF gauge config

Ensemble	$L^3 \times T$	a (fm)	$m_s^{(s)}({ m MeV})$	$m_{\pi} \; (\mathrm{MeV})$	$\overline{N_{config}}$
24I	$24^3 \times 64$	0.1105(3)	120	330	203
32I	$32^3 \times 64$	0.0828(3)	110	300	309
48I	$48^3 \times 96$	0.1141(2)	94.9	139	81

Y. Aoki, T. Blum, et al.,

[RBC and UKQCD Collaborations] (2011, 2016)

$$R_{\mu=i}(\Gamma_k) \xrightarrow{(t_2-t_1)\gg 1, t_1\gg 1} \xrightarrow{\epsilon_{ijk}q_j} G_M^s(Q^2)$$

$$R_{\mu=4}(\Gamma_e) \xrightarrow{(t_2-t_1)\gg 1, t_1\gg 1} G_E^s(Q^2)$$

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2} F_2(Q^2)$$

 $G_M(Q^2) = F_1(Q^2) + F_2(Q^2).$

Features of This Calculation

*Use overlap fermion

*Combined fit of summed ratio and plateau method

*Momentum transfer range $0.05 \, \text{GeV}^2 < Q^2 < 1.31 \, \text{GeV}^2$

*Model independent z-expansion for Q2 dependence of the FFs

*17 valence quark masses including one corresponds to pion mass 140 MeV

*Finite volume and lattice spacing correction included in a global fit

Q²-Extrapolation

Dipole Form vs. z-expansion

* z-expansion, R. J. Hill (2010)

$$G_M^{s,dipole}(Q^2) = \frac{G_M^s(0)}{(1 + \frac{Q^2}{\Lambda^2})^2}$$

$$G_M^{s,z-exp}(Q^2) = \sum_{k=0}^{k_{max}} a_k z^k , z = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}}}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}}}}.$$

Continuum Extrapolation

*Global fit formula

$$G_M^s(0; m_\pi, m_K, a, L) = A_0 + A_1 m_\pi + A_2 m_K + A_3 a^2 + A_4 m_\pi \left(1 - \frac{2}{m_\pi L}\right) e^{-m_\pi L}$$

Chiral interpolation - Musolf, et. al. (97); Hemmert et. al (99) Finite volume correction - S. Beane (04)

Results

 $G_{M}(0)$ | physical = -0.073(17)(08) $G_{M}(0)$ | physical = -0.118(29)(11) (*charge factor not included*)

G_M(0) comparison

Global fit to experimental data

Experimental EMFF - Lattice QCD connected EMFF

At physical pion mass

Most precise and accurate to date

Charge Radii - Continuum Extrapolation

$$\langle r^2 \rangle_E \equiv -6 \frac{dG_E}{dQ^2} |_{Q^2 = 0}$$

*Chiral Extrapolation - Hemmert, et. al. (99)

*Volume Correction - Tiburzi (14)

Global fit formula

$$\langle r_s^2 \rangle_E(m_\pi, m_N, m_K, a, L) = A_0 + A_1/m_N^2 + A_2 \log(m_K) + A_3 a^2 + A_4 \sqrt{L} e^{-m_\pi L}$$

Nucleon Charge Radii

$$\langle r^s_E \rangle^2 = -0.0046(21)(10) \text{ fm}^2$$

$$< r^{ud}_{E} > ^2 = -0.054(16)(13) \text{ fm}^2$$

 $< r^{ud}_{E} > 2$ almost = 10 times larger than $< r^{s}_{E} > 2$

Proton charge radius puzzle

*Include charge factors of u,d,s quarks *for simplicity consider only central value

Nucleon radii	Experimental values	DI ud-contribution	DI s-contribtuion	Total DI contribution
$\langle r_E^p angle^2$	$0.77\mathrm{fm^2}~(ep~\mathrm{CODATA})$	$-0.018 \mathrm{fm}^2$	$0.0015 \mathrm{fm}^2$	~2.1%
$\langle r_E^p angle^2$	$0.707062\mathrm{fm^2}~(\mu p~\mathrm{Lamb~shift})$	$-0.018 \mathrm{fm}^2$	$0.0015 \mathrm{fm}^2$	$\sim 2.3\%$
$\langle r_E^n angle^2$	$-0.1161{\rm fm^2}$	$-0.018 \mathrm{fm}^2$	$0.0015 \mathrm{fm}^2$	~14%

Thank You!

$$R(t_2, t_1) = C_0 + C_1 e^{-\Delta m(t_2 - t_1)} + C_2 e^{-\Delta m t_1} + C_3 e^{-\Delta m t_2},$$

$$SR(t_2) = \sum_{t_1 \ge t'}^{t_1 \le (t_2 - t'')} R(t_2, t_1)$$

$$= (t_2 - t' - t'' + 1)C_0 + C_1 \frac{e^{-\Delta m t''} - e^{-\Delta m(t_2 - t' + 1)}}{1 - e^{-\Delta m}}$$

$$+ C_2 \frac{e^{-\Delta m t'} - e^{-\Delta m(t_2 - t'' + 1)}}{1 - e^{-\Delta m}} + C_3 (t_2 - t' - t'' + 1)e^{-\Delta m t_2}.$$

FIG. 2. Combined fit result for disconnected contribution $G_M^s(Q^2 = 0.0515 \,\text{GeV}^2)$ with $m_\pi = 207 \,\text{MeV}$. The bands show fits to the 3pt/2pt ratios. The current insertion time t_1 is shifted by half the sink-source separation for clarity.

Motivation

- * s-quark contribution arises from vacuum, sign and magnitude related to nonperturbative structure of nucleon
- * Models and experimental results (GO, HAPPEX, A4, SAMPLE) of s-quark EMFF quite uncertain
- * Nonzero strange Sachs electric FF G_E^s at $Q^2>0$ implies different spatial distribution of s and \bar{s} in nucleon
- * A first-principle calculation required in the continuum limit with controlled systematic uncertainties

Chiral extrapolation Manohar, Savage, Jenkins, Luke PLB 302:482-490, 1993

$$G_M^{ud}(0; m_{\pi}, m_K, m_N, a, L) = A_0 + A_1 m_{\pi} m_N + A_2 m_K m_N$$
$$+ A_3 m_{\pi}^2 log(m_{\pi}^2) + A_4 a^2 + A_5 m_{\pi} \left(1 - \frac{2}{m_{\pi} L}\right) e^{-m_{\pi} L}$$

$$G_M^{ud}(0)|_{\text{physical}} = -0.118(28) \,\mu_N.$$

Jeremy Green, et. al. 2015, m_pi = 317 MeV

	one-quark	many-quark	heavy-quark	total
R_V^p	-0.054	± 0.033	$< 10^{-4}$	0.054 ± 0.033
R_V^n	-0.0143	± 0.0004	$< 10^{-4}$	-0.0143 ± 0.0004
R_A^1	-0.187	-0.04 ± 0.24		-0.227 ± 0.24
R_A^0	0.072	0.01 ± 0.14	0.02	102 ± 0.14