Measurement of analyzing powers for $p - {^3\text{He}}$ scattering with polarized ^3He target

Department of Physics, Tohoku University, Japan

Atomu Watanabe
Introduction

2-Nucleon Forces

first formulated by H. Yukawa ➔ meson exchange picture

1960’s~ performed many NN scattering exp. throughout the world
1990’s realistic NN potentials (AV18, CD-Bonn, Nijmegen I&II)
→ precisely reproduced many NN scattering data ($N_{\text{data}} \sim 4000$, $\chi^2 \sim 1$)

$A \geq 3$ system

- scattering observables ($d+p$)
- binding energies (^3H, ^3He)
- equation of state of nuclear matter

only NN potential

reproduced by Three-Nucleon Forces (3NFs)
Experimental study of 3NFs

Property of Nuclear Force
- momentum dependence
- spin dependence
- isospin dependence

Few-Nucleon Scattering is a good approach
- direct comparison
- precise data ↔ rigorous theoretical calc.
- quantitative discussion of 3NFs

$d+p$ elastic scattering at 70~300 MeV/A

\[\frac{d\sigma}{d\Omega}, A_{ij} \]

precise data

The first signatures of 3NFs in 3-nucleon scattering system (at intermediate energy)

K. Sekiguchi et al., PRC 65, 034003 (2002)
3NFs effect in 4-nucleon system

Our Next Step

- 3NFs effects in the $A \geq 4$ system
- Isospin dependence of 3NFs

→ we focus on $p + ^3\text{He}$ system
 - Theoretical calculation (at low energy)
 - The appearance of 3NFs at intermediate energy...

Planning the measurement in

$p + ^3\text{He}$ scattering system (at 70 MeV)

$\frac{d\sigma}{d\Omega}$, $A_y(^3\text{He}$ and $p)$

^3He analyzing power (spin observable)

$A_y{^3\text{He}}$ calculation at $E_p = 5.54$ MeV

M. Viviani et al., PRL 111, 172302 (2013)

Need to develop

the polarized ^3He target
Polarized 3He target

Requirement for our exp.
- high polarization (> 20%)
- high density (~3 atm at room temp.)
- measuring polarization during scattering exp.

How to polarize 3He gas

Method: **Spin Exchange Optical Pumping (SEOP)**

1. Polarization of Rb atom
 - Static magnetic field (~3 mT)
 - circularly polarized laser σ^+
 - $\lambda=795$ nm (Rb D_1 transition)

2. Spin-Exchange
 - Rb
 - electron spin
 - 3He
 - nuclear spin
 - Fermi interaction
 - polarize 3He nuclei

3He, Rb, N$_2$ target glass cell
3He polarization measurement

AFP-NMR method

- RF + sweeping magnetic field → reverse 3He nuclear spin
- detect induced voltage by pick-up coil

NMR signal is proportional to 3He polarization

This method does not give the absolute 3He polarization
Calibration of NMR signal

Rb-ESR

- in the presence of magnetic field, energy levels of Rb are split (Zeeman effect)
- because of the presence of polarized 3He, ESR frequency shift comes about
- ESR freq. shift is proportional to 3He polarization

Energy levels of 85Rb

Hyper fine structure

Zeeman splitting
in the presence of magnetic field, energy levels of Rb are split (Zeeman effect)

because of the presence of polarized 3He, ESR frequency shift comes about

ESR freq. shift is proportional to 3He polarization

obtaining the absolute 3He polarization and calibration of NMR signal are possible

Calibration of NMR signal

- in the presence of magnetic field, energy levels of Rb are split (Zeeman effect)
- because of the presence of polarized 3He, ESR frequency shift comes about
- ESR freq. shift is proportional to 3He polarization

obtaining the absolute 3He polarization and calibration of NMR signal are possible

- measure ESR freq. in 3He nuclear spin-up and down
- ESR freq. shift between spin-up and down is a few kHz

as a result...

the value of 3He polarization is $\sim 10\%$

Typical result of ESR freq. measurement
p-^3^He elastic scattering exp.

Setup

- beam: 70 MeV proton (~5 nA)
- target: polarized 3He gas (~3 atm, 2.98 mg/cm2)
- detector: ΔE-E detector (PID by ΔE-E coincidence)
- measured angles: 50°, 70°, 90°, 110° (lab. system)

Solid Angle: ~0.4 msr

Schematic view of exp. setup

@CYRIC, Tohoku Univ.
- beam intensity is measured by Faraday Cup and Beam Monitor
- reverse 3He nuclear spin direction by AFP-NMR method
- detect protons scattered by 3He nuclei
- and compare yields before and after reverse 3He nuclear spin direction

\[p_y A_y^{3\text{He}} = \frac{N_+ - N_-}{N_+ + N_-} \]

N_\pm: Yield (\pm: spin-up or down)

p_y: 3He polarization

$A_y^{3\text{He}}$: 3He analyzing power

“asymmetry” of yields \propto 3He analyzing power
Results of exp.

PID spectrum (ΔE vs. E)

p^+^3He elastic event

Yield of elastic proton event

asymmetry of yield/B.I. was confirmed at forward angles (50°, 70°)

at left-side 50° detector

Preliminary

Spin down

Spin up
Results of exp.

110° detector

- energy of scattered proton is low
- thus, PID spectrum spread (right figure)
 - need to develop detector
- low statistics for elastic events
 - need to improve 3He polarization

Statistical error: $\delta A_{y}^{3\text{He}} = \frac{1}{\sqrt{N_{p_y}}}$

- N: Yield of detected protons
- p_y: 3He polarization
- $A_{y}^{3\text{He}}$: 3He analyzing power

<table>
<thead>
<tr>
<th>θ_{lab} [deg]</th>
<th>$\theta_{\text{c.m.}}$ [deg]</th>
<th>E_{p}^* [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>65.5</td>
<td>50.9</td>
</tr>
<tr>
<td>70</td>
<td>89.0</td>
<td>41.1</td>
</tr>
<tr>
<td>90</td>
<td>110.2</td>
<td>32.1</td>
</tr>
<tr>
<td>110</td>
<td>128.9</td>
<td>25.1</td>
</tr>
</tbody>
</table>

Energies of scattered proton

PID spectrum (ΔE vs. E) at 110°
Summary

- Recently, importance of 3NFs has been indicated

- In order to explore 3NFs, we are planning the measurement in $p-^3$He system at intermediate energy

- We have performed the measurement of 3He analyzing power for $p-^3$He scattering at CYRIC, Tohoku Univ.

- Future plan

 - **improve 3He polarization**

 - **improve process of gas-filling and glass cell cleaning**

 - **develop detectors** for measurement at backward angles

 - measure 3He analyzing power **at the other angles**
Collaborators

Department of Physics, Tohoku Univ.

CYRIC, Tohoku Univ.
M. Itoh

RIKEN, Nishina Center
T. Uesaka

NIRS
T. Wakui

KEK
T. Ino

Thank you for your attention.
$p^+{^3He}$ theoretical calc. @70 MeV

by A. Deltuva (private communication)

differential cross section

3He analyzing power
Rotating system (freq. = ω)

sweeping magnetic field

$B_\text{eff} = \left(B + \frac{\omega}{\gamma_3^{\text{He}}} \right) e_z + B_1 e'_x$

B : static magnetic field
B_1 : RF magnetic field
B_{eff} : effective magnetic field
ESR frequency shift

\[\Delta \nu (m_F = \pm F) = \frac{2\mu_0}{3} \frac{\mu_B g_e}{\hbar (2I + 1)} \left(1 + \frac{8I}{(2I + 1)^2} \frac{\mu_B g_e B_0}{\hbar A_{\text{hfs}}} \right) \kappa_0 \mu_K [^3\text{He}] P_{^3\text{He}} \]

constant

(\kappa_0 \text{ is coefficient depending on temp.})

energy levels of ^{85}Rb

\begin{align*}
5^2S_{1/2} & \quad F = 3 \\
F = 2 & \quad -2 \quad -1 \quad 0 \quad +1 \quad +2 \quad +3 \quad m_F
\end{align*}

ESR

\[\nu = \Delta E / \hbar \]

\[\nu \sim 6 \text{ MHz} \]

@\[B_0 \sim 1.20 \text{ mT} \]

\[\Delta \nu \sim \text{ few kHz} \]
Setup of ESR measurement

- Main Coils
- Drive Coils
- Oven
- ESR Coil
- Laser Light
- VCO
- Freq. Counter
- I-V Converter
- Lock in Amp.
- Ref. Target Glass Cell
- Function Generator
- D₂ Filter
- Photo Diode
- PI-Feedback
- Mixer
Our target system design

Pumping laser
- Power: 40 W
- Wavelength: 794.7 nm (FWHM: 0.2 nm)

Target glass cell
- Structure: double-cell
- Material: GE180
- Gas pressure: 3He gas -> 3 atm, N_2 gas -> 100 torr
- Typical relax. time: ~8 hour (@160°C), ~10 hour (@room temp.)

NMR
- Static magnetic field: ~3 mT
- RF magnetic field: ~5 μT, 87 kHz
Detector design

50°, 70°, 90° detector

- plastic + NaI(Tl) + PMT
- ΔE detector: plastic (1 mm)
- E detector: NaI(Tl) (50 mm)
- solid angle: 0.4 msr

110° detector

- plastic + PMT
- ΔE detector: plastic (1 mm)
- E detector: plastic (50 mm)
- solid angle: 0.5 msr

Beam Monitor

- plastic + PMT
- ΔE detector: plastic (2 mm)
- E detector: plastic (35 mm)
- solid angle: 4.3 msr
- target: CH$_2$ (20 µm)
For improvement of ^3He polarization

\[P_{^3\text{He}} = \bar{P}_{\text{Rb}} \frac{\gamma_{\text{SE}}}{\gamma_{\text{SE}} + \Gamma_{^3\text{He}}} \]

$P_{^3\text{He}}$: ^3He polarization
P_{Rb} : average of Rb polarization
γ_{SE} : spin-exchange rate between ^3He nucleus and Rb atoms
$\Gamma_{^3\text{He}}$: relaxation rate of ^3He polarization

- impurities in the ^3He gas
- inhomogeneity of magnetic field
- dipole interaction between two ^3He nucleus

we focused on

develop the vacuum system for cell-construction