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Introduction�

2-Nucleon Forces �

first formulated by H. Yukawa     meson exchange picture 
Proc. Phys. Math. Soc. Jpn 17, 48 (1935) �

p n
π�

1960’s~  performed many NN scattering exp. throughout the world 

1990’s    realistic NN potentials (AV18, CD-Bonn, Nijmegen I&II) 

precisely reproduced many NN scattering data (Ndata ~ 4000, χ2 ~ 1) �

l  scattering observables (d+p) 

l  binding energies (3H, 3He) 

l  equation of state of nuclear matter�

A≧3 system�
only NN potential �

reproduced by 
Three-Nucleon Forces (3NFs) �



l  momentum dependence 

l  spin dependence 

l  isospin dependence�

Experimental study of 3NFs�
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K. Sekiguchi et al., PRC 65, 034003 (2002) �

Property of Nuclear Force �
Few-Nucleon Scattering  

is a good approach�

direct comparison 
precise data ⇔ rigorous theoretical calc. 

quantitative discussion of 3NFs �

d+p elastic scattering at 70~300 MeV/A �

at 135 MeV/A �

d�

d�
, Aij

precise data�

The first signatures of 3NFs  
in 3-nucleon scattering system 

(at intermediate energy)�



3NFs effect in 4-nucleon system�

Our Next Step �

u 3NFs effects in the A≧4 system 

u  isospin dependence of 3NFs�

Planning the measurement in  
p-3He scattering system (at 70 MeV) �

d�

d�
, Ay(3He and p)

3He analyzing power (spin observable)�

need to develop 
 the polarized 3He target�

M. Viviani et al., PRL 111, 172302 (2013) �

Ay
3He calculation at Ep = 5.54 MeV �

we focus on p+3He system�

•  theoretical calculation (at low energy) 
•  the appearance of 3NFs at intermediate energy…?�



l  high polarization (> 20 %) 

l  high density (~3 atm at room temp.) 

l  measuring polarization during scattering exp. 

Polarized 3He target�

Requirement for our exp. �

How to polarize 3He gas � Method : Spin Exchange Optical Pumping (SEOP)�

target glass cell�

① Polarization of Rb atom

Rb Rb

Static magnetic field
(~3 mT)

circularly polarized laser  ı+
Ǌ=795 nm  (Rb D1 transiton)

electron spin

② Spin-Exchange

Rb Rb

3He3He

electron spin

nuclear spin

Fermi Interaction

polarize 3He nuclei

3He, Rb, N2�



3He polarization measurement�

AFP-NMR method �

l  RF + sweeping magnetic field            reverse 3He nuclear spin 

l  detect induced voltage by pick-up coil�

This method does not give  
the absolute 3He polarization �

Schematic view of NMR system�
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Calibration of NMR signal�

 Rb-ESR �

l  in the presence of magnetic field, energy levels of Rb are split (Zeeman effect) 

l  because of the presence of polarized 3He, ESR frequency shift comes about 

l  ESR freq. shift is proportional  to 3He polarization 
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Energy levels of 85Rb �

Ref. : See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998) �
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ν ± ∆ν�

obtaining the absolute 3He polarization and calibration of NMR signal 
are possible�

with polarized 3He�

Ref. : See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998) �



Calibration of NMR signal�

 Rb-ESR �

l  in the presence of magnetic field, energy levels of Rb are split (Zeeman effect) 

l  because of the presence of polarized 3He, ESR frequency shift comes about 

l  ESR freq. shift is proportional  to 3He polarization 

the value of 3He polarization is ~10 %�

as a result…�
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Typical result of ESR freq. measurement�

•  measure ESR freq. in 3He nuclear 
spin-up and down 

 
•  ESR freq. shift between spin-up 

and down is a few kHz�

obtaining the absolute 3He polarization and calibration of NMR signal 
are possible�

Ref. : See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998) �



l  beam : 70 MeV proton (~ 5nA) 

l  target : polarized 3He gas (~3 atm, 2.98 mg/cm2) 

l  detector : ΔE-E detector (PID by ΔE-E coincidence) 

l  measured angles : 50°, 70°, 90°, 110° (lab. system)�

p-3He elastic scattering exp.�

Setup �
plastic(1 mm)  

+ 
plastic (50 mm) or 

NaI(Tl) (50 mm)  
 

solid angle : ~0.4 msr�

@CYRIC, Tohoku Univ.�

p beam �

Target cell �

Detectors (left side)�

Beam Monitor�

Faraday Cup �

Detectors (right side)�

Polyethylene film�

Schematic view of exp. setup�



p-3He elastic scattering exp.�

l  beam intensity is measured by Faraday Cup and Beam Monitor 

l  reverse 3He nuclear spin direction by AFP-NMR method 

l  detect protons scattered by 3He nuclei 

l  and compare yields before and after reverse 3He nuclear spin direction 

“asymmetry” of yields ∝ 3He analyzing power 

@CYRIC, Tohoku Univ.�

Schematic view of exp. setup�

pyA
3He
y =

N+ � N�
N+ + N�

N± ：Yield （±：spin-up or 

down） 

py ：3He polarization 

Ay
3He : 3He analyzing power 

p beam �

Target cell �

Detectors (left side)�

Beam Monitor�

Detectors (right side)�

Polyethylene film�
Faraday Cup �
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PID spectrum (ΔE vs. E)� Yield of elastic proton event�

at left-side 50° detector �

p+3He  
elastic event�

asymmetry of yield/B.I. was confirmed 
at forward angles(50°, 70°)�

Preliminary�

Spin down�

Spin up �



Results of exp.�

PID spectrum (ΔE vs. E) at 110°�
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110° detector �

l  energy of scattered proton is low 

l  thus, PID spectrum spread (right figure) 

l  low statistics for elastic events�

need to improve 3He polarization�

need to develop detector�

�A
3He
y =

1�
Npy

statistical error :�

θlab [deg] � θc.m. [deg] � Ep’ [MeV] �
50 � 65.5� 50.9�
70 � 89.0� 41.1�
90 � 110.2� 32.1�

110 � 128.9� 25.1�

Energies of scattered proton�

p+3He  
elastic event�

N：Yield of detected protons 

py ：3He polarization 

Ay
3He : 3He analyzing power 



•  improve 3He polarization 

improve process of gas-filling and glass cell cleaning 

•  develop detectors for measurement at backward angles 

•  measure 3He analyzing power at the other angles 

Summary �

u  Recently, importance of 3NFs has been indicated 

u  In order to explore 3NFs, we are planning the measurement in 
p-3He system at intermediate energy 

u We have performed the measurement of 3He analyzing power 
for p-3He scattering at CYRIC, Tohoku Univ. 

u  Future plan �
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p+3He theoretical calc. @70 MeV� by A. Deltuva (private communication) �

differential cross section� 3He analyzing power�



AFP-NMR �

x

ǔ

ǔ/Ǆ

B1

Beff

B1

y

z

B

B’

Rotating system (freq. = Ʒ)

sweeping magnetic field

B : static magnetic field 
B1 : RF magnetic field 
Beff : effective magnetic field�

Be� =

�
B +

�

�3He

�
ez + B1e

�
x



Rb-ESR �

��(mF = ±F ) =
2µ0

3

µBge

h(2I + 1)

�
1 � 8I

(2I + 1)2
µBgeB0

hAhfs

�
�0µK[3He]P3He

ESR frequency shift� M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998) �

constant  
(κ0 is coefficient depending on temp.) �
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energy levels of 85Rb �

ν ~ 6 MHz 
@B0 ~ 1.20 mT�

∆ν ~ few kHz 



Rb-ESR �

Setup of ESR measurement�
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power : 40 W 
wavelength : 794.7 nm (FWHM : 0.2 nm)�

Our target system design�

Pumping laser�

structure : double-cell 
material : GE180 
gas pressure : 3He gas -> 3 atm, N2 gas -> 100 torr 
typical relax. time : ~8 hour (@160℃), ~10 hour (@room temp.) 

Target glass cell�

10 cm�

15 cm�

static magnetic field : ~3 mT 
RF magnetic field : ~5 µT, 87 kHz 

NMR �



plastic + NaI(Tl) +PMT 

∆E detector : plastic (1 mm) 

E detector : NaI(Tl) (50 mm) 

solid angle : 0.4 msr 

Detector design�

50˚,70˚,90˚ detector�

∆E-E detector�

plastic +PMT 

∆E detector : plastic (1 mm) 

E detector : plastic (50 mm) 

solid angle : 0.5 msr 

110˚ detector�

plastic +PMT 

∆E detector : plastic (2 mm) 

E detector : plastic (35 mm) 

solid angle : 4.3 msr 

target : CH2 (20 µm) 

Beam Monitor�



For improvement of 3He polarization�

P3He = P̄Rb
�SE

�SE + �3He

P3He ：3He polarization 
PRb ：average of Rb polarization 
γSE : spin-exchange rate between 3He nucleus and Rb atoms 
Γ3He ：relaxation rate of 3He polarization�

•  impurities in the 3He gas 
•  inhomogeneity of magnetic field 
•  dipole interaction between two 3He nucleus �

we focused on�

develop the vacuum system for cell-construction�


