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Introduction

2-Nucleon Forces

first formulated by H. Yukawa     meson exchange picture 
Proc. Phys. Math. Soc. Jpn 17, 48 (1935) 

p n
π�

1960’s~  performed many NN scattering exp. throughout the world 

1990’s    realistic NN potentials (AV18, CD-Bonn, Nijmegen I&II) 

precisely reproduced many NN scattering data (Ndata ~ 4000, χ2 ~ 1)

l  scattering observables (d+p) 

l  binding energies (3H, 3He) 

l  equation of state of nuclear matter

A≧3 system
only NN potential

reproduced by 
Three-Nucleon Forces (3NFs)



l  momentum dependence 

l  spin dependence 

l  isospin dependence

Experimental study of 3NFs
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K. Sekiguchi et al., PRC 65, 034003 (2002)

Property of Nuclear Force 
Few-Nucleon Scattering  

is a good approach

direct comparison 
precise data ⇔ rigorous theoretical calc. 

quantitative discussion of 3NFs

d+p elastic scattering at 70~300 MeV/A 

at 135 MeV/A

d�

d�
, Aij

precise data

The first signatures of 3NFs  
in 3-nucleon scattering system 

(at intermediate energy)



3NFs effect in 4-nucleon system

Our Next Step 

u 3NFs effects in the A≧4 system 

u  isospin dependence of 3NFs

Planning the measurement in  
p-3He scattering system (at 70 MeV)

d�

d�
, Ay(3He and p)

3He analyzing power (spin observable)

need to develop 
 the polarized 3He target

M. Viviani et al., PRL 111, 172302 (2013)

Ay
3He calculation at Ep = 5.54 MeV

we focus on p+3He system

•  theoretical calculation (at low energy) 
•  the appearance of 3NFs at intermediate energy…?



l  high polarization (> 20 %) 

l  high density (~3 atm at room temp.) 

l  measuring polarization during scattering exp. 

Polarized 3He target

Requirement for our exp. 

How to polarize 3He gas Method : Spin Exchange Optical Pumping (SEOP)

target glass cell

① Polarization of Rb atom

Rb Rb

Static magnetic field
(~3 mT)

circularly polarized laser  ı+
Ǌ=795 nm  (Rb D1 transiton)

electron spin

② Spin-Exchange

Rb Rb

3He3He

electron spin

nuclear spin

Fermi Interaction

polarize 3He nuclei

3He, Rb, N2



3He polarization measurement

AFP-NMR method 

l  RF + sweeping magnetic field            reverse 3He nuclear spin 

l  detect induced voltage by pick-up coil

This method does not give  
the absolute 3He polarization

Schematic view of NMR system
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Beam axis

Typical NMR signal
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Calibration of NMR signal

 Rb-ESR

l  in the presence of magnetic field, energy levels of Rb are split (Zeeman effect) 

l  because of the presence of polarized 3He, ESR frequency shift comes about 

l  ESR freq. shift is proportional  to 3He polarization 
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Energy levels of 85Rb

Ref. : See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998)
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obtaining the absolute 3He polarization and calibration of NMR signal 
are possible

with polarized 3He

Ref. : See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998)



Calibration of NMR signal

 Rb-ESR

l  in the presence of magnetic field, energy levels of Rb are split (Zeeman effect) 

l  because of the presence of polarized 3He, ESR frequency shift comes about 

l  ESR freq. shift is proportional  to 3He polarization 

the value of 3He polarization is ~10 %

as a result…
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Typical result of ESR freq. measurement

•  measure ESR freq. in 3He nuclear 
spin-up and down 

 
•  ESR freq. shift between spin-up 

and down is a few kHz

obtaining the absolute 3He polarization and calibration of NMR signal 
are possible

Ref. : See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998)



l  beam : 70 MeV proton (~ 5nA) 

l  target : polarized 3He gas (~3 atm, 2.98 mg/cm2) 

l  detector : ΔE-E detector (PID by ΔE-E coincidence) 

l  measured angles : 50°, 70°, 90°, 110° (lab. system)

p-3He elastic scattering exp.

Setup 
plastic(1 mm)  

+ 
plastic (50 mm) or 

NaI(Tl) (50 mm)  
 

solid angle : ~0.4 msr

@CYRIC, Tohoku Univ.

p beam

Target cell

Detectors (left side)

Beam Monitor

Faraday Cup

Detectors (right side)

Polyethylene film

Schematic view of exp. setup



p-3He elastic scattering exp.

l  beam intensity is measured by Faraday Cup and Beam Monitor 

l  reverse 3He nuclear spin direction by AFP-NMR method 

l  detect protons scattered by 3He nuclei 

l  and compare yields before and after reverse 3He nuclear spin direction 

“asymmetry” of yields ∝ 3He analyzing power 

@CYRIC, Tohoku Univ.

Schematic view of exp. setup

pyA
3He
y =

N+ � N�
N+ + N�

N± ：Yield （±：spin-up or 

down） 

py ：3He polarization 

Ay
3He : 3He analyzing power 

p beam

Target cell

Detectors (left side)

Beam Monitor

Detectors (right side)

Polyethylene film
Faraday Cup
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Results of exp.

PID spectrum (ΔE vs. E) at 110°
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l  energy of scattered proton is low 

l  thus, PID spectrum spread (right figure) 

l  low statistics for elastic events

need to improve 3He polarization

need to develop detector

�A
3He
y =

1�
Npy

statistical error :

θlab [deg] θc.m. [deg] Ep’ [MeV]
50 65.5 50.9

70 89.0 41.1

90 110.2 32.1

110 128.9 25.1

Energies of scattered proton

p+3He  
elastic event

N：Yield of detected protons 

py ：3He polarization 

Ay
3He : 3He analyzing power 



•  improve 3He polarization 

improve process of gas-filling and glass cell cleaning 

•  develop detectors for measurement at backward angles 

•  measure 3He analyzing power at the other angles 

Summary

u  Recently, importance of 3NFs has been indicated 

u  In order to explore 3NFs, we are planning the measurement in 
p-3He system at intermediate energy 

u We have performed the measurement of 3He analyzing power 
for p-3He scattering at CYRIC, Tohoku Univ. 

u  Future plan
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differential cross section 3He analyzing power



AFP-NMR
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Rotating system (freq. = Ʒ)

sweeping magnetic field

B : static magnetic field 
B1 : RF magnetic field 
Beff : effective magnetic field

Be� =

�
B +

�

�3He

�
ez + B1e

�
x



Rb-ESR

��(mF = ±F ) =
2µ0

3

µBge

h(2I + 1)

�
1 � 8I

(2I + 1)2
µBgeB0

hAhfs

�
�0µK[3He]P3He

ESR frequency shift M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998)

constant  
(κ0 is coefficient depending on temp.) 
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ν ~ 6 MHz 
@B0 ~ 1.20 mT

∆ν ~ few kHz 



Rb-ESR

Setup of ESR measurement
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power : 40 W 
wavelength : 794.7 nm (FWHM : 0.2 nm)

Our target system design

Pumping laser

structure : double-cell 
material : GE180 
gas pressure : 3He gas -> 3 atm, N2 gas -> 100 torr 
typical relax. time : ~8 hour (@160℃), ~10 hour (@room temp.) 

Target glass cell

10 cm

15 cm

static magnetic field : ~3 mT 
RF magnetic field : ~5 µT, 87 kHz 

NMR



plastic + NaI(Tl) +PMT 

∆E detector : plastic (1 mm) 

E detector : NaI(Tl) (50 mm) 

solid angle : 0.4 msr 

Detector design

50˚,70˚,90˚ detector

∆E-E detector

plastic +PMT 

∆E detector : plastic (1 mm) 

E detector : plastic (50 mm) 

solid angle : 0.5 msr 

110˚ detector

plastic +PMT 

∆E detector : plastic (2 mm) 

E detector : plastic (35 mm) 

solid angle : 4.3 msr 

target : CH2 (20 µm) 

Beam Monitor



For improvement of 3He polarization

P3He = P̄Rb
�SE

�SE + �3He

P3He ：3He polarization 
PRb ：average of Rb polarization 
γSE : spin-exchange rate between 3He nucleus and Rb atoms 
Γ3He ：relaxation rate of 3He polarization

•  impurities in the 3He gas 
•  inhomogeneity of magnetic field 
•  dipole interaction between two 3He nucleus

we focused on

develop the vacuum system for cell-construction


