22nd International Spin Symposium

Sep. 25-30, 2016

Measurement of analyzing powers for $p-{}^{3}\text{He}$ scattering with polarized ${}^{3}\text{He}$ target

Department of Physics, Tohoku University, Japan

Atomu Watanabe

Introduction

2-Nucleon Forces

first formulated by H. Yukawa meson exchange picture
Proc. Phys. Math. Soc. Jpn 17, 48 (1935)

1960's~ performed many NN scattering exp. throughout the world

1990's realistic NN potentials (AV18, CD-Bonn, Nijmegen I&II)

precisely reproduced many NN scattering data $(N_{\rm data} \sim 4000, \chi^2 \sim 1)$

A≧3 system

- scattering observables (d+p)
- binding energies (³H, ³He)
- equation of state of nuclear matter

Experimental study of 3NFs

Property of Nuclear Force

- momentum dependence
- spin dependence
- isospin dependence

Few-Nucleon Scattering

is a good approach

direct comparison

precise data \Leftrightarrow rigorous theoretical calc.

quantitative discussion of 3NFs

d+p elastic scattering at 70~300 MeV/A

The first signatures of 3NFs

in 3-nucleon scattering system (at intermediate energy)

K. Sekiguchi et al., PRC 65, 034003 (2002)

3NFs effect in 4-nucleon system

Our Next Step

- ◆ 3NFs effects in the A≥4 system
- ◆ isospin dependence of 3NFs

we focus on p+3He system

- theoretical calculation (at low energy)
- the appearance of 3NFs at intermediate energy...?

 $A_y^{3\text{He}}$ calculation at $E_p = 5.54 \text{ MeV}$

M. Viviani et al., PRL 111, 172302 (2013)

Planning the measurement in p- 3 He scattering system (at 70 MeV)

$$\frac{d\sigma}{d\Omega}$$
, $A_y(^3\text{He and }p)$

need to develop
the polarized ³He target

³He analyzing power (spin observable)

Polarized ³He target

Requirement for our exp.

- high polarization (> 20 %)
- high density (~3 atm at room temp.)
- measuring polarization during scattering exp.

 3 He, Rb, N_{2}

target glass cell

How to polarize ³He gas

Method: Spin Exchange Optical Pumping (SEOP)

³He polarization measurement

3He reverse

AFP-NMR method

RF + sweeping magnetic field reverse ³He nuclear spin

detect induced voltage by pick-up coil

Drive Coils B_0 B_1 B_0 B_1 B_0 B_1 B_0 B_0 B

Schematic view of NMR system

This method does not give the absolute ³He polarization

Calibration of NMR signal

Rb-ESR

Ref.: See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998)

- in the presence of magnetic field, energy levels of Rb are split (Zeeman effect)
- because of the presence of polarized ³He, ESR frequency shift comes about
- ESR freq. shift is proportional to ³He polarization

Energy levels of 85Rb

Hyper fine structure

Zeeman spliting

Calibration of NMR signal

Rb-ESR

Ref.: See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998)

- in the presence of magnetic field, energy levels of Rb are split (Zeeman effect)
- because of the presence of polarized ³He, ESR frequency shift comes about
- ESR freq. shift is proportional to ³He polarization

obtaining the absolute ³He polarization and calibration of NMR signal are possible

Energy levels of 85Rb

Hyper fine structure

Zeeman spliting

Calibration of NMR signal

Rb-ESR

Ref.: See, e.g., M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998)

- in the presence of magnetic field, energy levels of Rb are split (Zeeman effect)
- because of the presence of polarized ³He, ESR frequency shift comes about
- ESR freq. shift is proportional to ³He polarization

obtaining the absolute ³He polarization and calibration of NMR signal are possible

- measure ESR freq. in ³He nuclear spin-up and down
- ESR freq. shift between spin-up and down is a few kHz

the value of 3 He polarization is ${}^{\sim}10 \%$

Typical result of ESR freq. measurement

p- 3 He elastic scattering exp.

@CYRIC, Tohoku Univ.

Setup

- beam : 70 MeV proton (~ 5nA)
- target: polarized ³He gas (~3 atm, 2.98 mg/cm²)
- detector : $\triangle E E$ detector (PID by $\triangle E E$ coincidence)
- measured angles: 50°, 70°, 90°, 110° (lab. system)

plastic(1 mm) + plastic (50 mm) or NaI(TI) (50 mm) solid angle : ~0.4 msr

p- 3 He elastic scattering exp.

@CYRIC, Tohoku Univ.

- beam intensity is measured by Faraday Cup and Beam Monitor
- reverse ³He nuclear spin direction by AFP-NMR method
- detect protons scattered by ³He nuclei
- and compare yields before and after reverse ³He nuclear spin direction
 - "asymmetry" of yields ∝ ³He analyzing power

Results of exp.

PID spectrum (ΔE vs. E)

at left-side 50° detector

asymmetry of yield/B.I. was confirmed at forward angles (50°, 70°)

Results of exp.

110° detector

- energy of scattered proton is low
- thus, PID spectrum spread (right figure)

- low statistics for elastic events
- need to improve ³He polarization

statistical error :
$$\delta A_y^{^3{\rm He}}=\frac{1}{\sqrt{N}p_y}$$

N: Yield of detected protons

 p_y : ${}^3{
m He}$ polarization

 $A_{\nu}^{3\text{He}}$: ³He analyzing power

Energies of scattered proton

$\theta_{ m lab}$ [deg]	$\theta_{\rm c.m.}$ [deg]	E_p ' [MeV]
50	65.5	50.9
70	89.0	41.1
90	110.2	32.1
110	128.9	25.1

PID spectrum (ΔE vs. E) at 110°

Summary

- Recently, importance of 3NFs has been indicated
- In order to explore **3NFs**, we are planning the measurement in p- 3 He system at intermediate energy
- We have performed the measurement of 3 He analyzing power for p- 3 He scattering at CYRIC, Tohoku Univ.
- Future plan
 - improve ³He polarization
 - improve process of gas-filling and glass cell cleaning
 - develop detectors for measurement at backward angles
 - measure ³He analyzing power at the other angles

Collaborators

Department of Physics, Tohoku Univ.

A. Watanabe, K. Sekiguchi, K. Miki, Y. Wada, Y. Shiokawa, D. Eto, T. Akieda,

H. Kon, S. Nakai, T. Mukai

CYRIC, Tohoku Univ.

M. Itoh

RIKEN, Nishina Center

T. Uesaka

NIRS

KEK

T. Wakui

T. Ino

Thank you for your attention.

AFP-NMR

B: static magnetic field

 B_1 : RF magnetic field

 $B_{\rm eff}$: effective magnetic field

$$\boldsymbol{B}_{\text{eff}} = \left(B + \frac{\omega}{\gamma_{^{3}\text{He}}}\right)\boldsymbol{e}_{z} + B_{1}\boldsymbol{e}'_{x}$$

Rb-ESR

ESR frequency shift

M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998)

$$\Delta\nu(m_F = \pm F) = \frac{2\mu_0}{3} \frac{\mu_{\rm B}g_e}{h(2I+1)} \left(1 \mp \frac{8I}{(2I+1)^2} \frac{\mu_{\rm B}g_eB_0}{hA_{\rm hfs}}\right) \kappa_0 \mu_{\rm K}[^3{\rm He}] P_{^3{\rm He}}$$

constant

(κ_0 is coefficient depending on temp.)

Our target system design

Pumping laser

power: 40 W

wavelength: 794.7 nm (FWHM: 0.2 nm)

Target glass cell

structure: double-cell

material: GE180

gas pressure : 3 He gas -> 3 atm, N_{2} gas -> 100 torr

typical relax. time: ~8 hour (@160°C), ~10 hour (@room temp.)

NMR

static magnetic field: ~3 mT

RF magnetic field: ~5 µT, 87 kHz

Detector design

50°,70°,90° detector

plastic + NaI(TI) +PMT

 ΔE detector : plastic (1 mm)

E detector: NaI(TI) (50 mm)

solid angle: 0.4 msr

 ΔE -E detector

110° detector

plastic +PMT

 ΔE detector : plastic (1 mm)

E detector: plastic (50 mm)

solid angle: 0.5 msr

Beam Monitor

plastic +PMT

 ΔE detector : plastic (2 mm)

E detector: plastic (35 mm)

solid angle: 4.3 msr

target: CH_2 (20 μ m)

For improvement of ³He polarization

$$P_{^{3}\mathrm{He}} = \bar{P}_{\mathrm{Rb}} \frac{\gamma_{\mathrm{SE}}}{\gamma_{\mathrm{SE}} + \Gamma_{^{3}\mathrm{He}}}$$

 $P_{\rm 3He}$: ³He polarization

 $P_{
m Rb}$: average of Rb polarization

 $\gamma_{\rm SE}$: spin-exchange rate between ³He nucleus and Rb atoms

 $\Gamma_{\rm ^3He}$: relaxation rate of $^3{\rm He}$ polarization

impurities in the ³He gas we focused on
 inhomogeneity of magnetic field
 dipole interaction between two ³He nucleus

