Acceleration of Polarized He-3 in Booster and AGS

Kiel Hock¹

¹Collider-Accelerator Department Brookhaven National Laboratory

22nd International Symposium on Spin Physics September 25-30, 2016

Table of Contents

Introduction

Booster

Booster Limitations

Possible Booster Configurations

Pyzgoubi

AC-dipole
Spin Tracking Results

Conclusion

Introduction

Why He3?

He3 in Booster

Booster

- ▶ 36 Dipoles, 48 Quadrupoles, 6 superperiods, 12 drift sections.
- ▶ Intrinsic Resonances occur at $G\gamma = 6n \pm \nu_y$, n=0,1,2,...[1]

He3 in the Booster

- ► G = -4.184
- $G\gamma_{injection} = -4.193$
- ► $B\rho_{injection} = 0.306$ Tm
- \triangleright 97kHz < f < 1.4MHz
- ▶ ν_y , ν_x typically vary between 4.0 and 5.0
- $\varepsilon_N = 4\pi mm \ mrad$ (From RHIC Run 14)

[1] S. Y. Lee. Spin Dynamics and Snakes in Synchrotrons. World Scientific 1997.

AGS Limitations on Booster

- ► Two partial siberian snakes stable spin direction perfectly matched for $G\gamma = 3n + 1.5.[2, 3]$
 - ▶ Extraction from Booster ideal at $G\gamma = -7.5$ or -10.5 or otherwise risk losing 10-100% polarization due to mismatch.[4]
- ▶ Partial siberian snakes are DC, have a large distortion of optics at low $B\rho$.[4]
- Figure Extraction from Booster ideal at $G\gamma = -10.5$.

^[2] H. Huang et al. Overcoming Depolarizing Resonances in the AGS with Two Helical Partial Siberian Snakes. Particle Accelerator Conference 2007 Proceedings June, 2007

^[3]F. Lin. Towards Full Preservation of Polarization of Proton Beams in AGS. PhD Thesis, Indiana University December, 2007.

^[4] F. Meot. Transport of Polarized He3 in Booster and AGS. BNL C-AD Spin Meeting November, 2015

Booster Limitations

- ▶ MMPS consists of 6 modules that provide 1000V.[5]
 - ► Only 2 modules capable of exceeding 3000A.
 - ▶ This limits fast ramp rate to 9.5 T m ($G\gamma = -10.5$ corresponds to $B\rho = 10.8$ Tm).
 - ▶ Extract at $G\gamma = -7.5$ with all 6 modules.
 - ▶ Extract at $G\gamma = -10.5$ with only 2 modules.
 - ▶ Crossing speed: $\alpha = 7.961 \times 10^{-6}$ (6 modules) or $\alpha = 2.654 \times 10^{-6}$ (2 modules)
- ▶ Booster extraction/AGS injection supplies designed for $B\rho = 9.5$ Tm.
- ▶ Saturation effects in Quadrupoles noticeable with $B\rho > 10.[6]$

^[5] K. Gardner. Injector Setup for Helions in RHIC. BNL C-AD Spin Meeting November, 2015

^[6] E. Bleser. Booster Short Quadrupole Measurements. Booster Technical Note no 174 September 12, 1990.

Spin Resonances in the Booster

0+

- ▶ Avoidable with ν_{y} < 4.1 when injecting.
- ▶ Unvoidable with $\nu_{y} > 4.1$ when injecting.

12-

- ▶ Avoidable with $\nu_{\it V} <$ 4.5 when extracting at $\it G\gamma = -7.5$
- ▶ Unvoidable when extracting at $G\gamma = -10.5$

6+

- ullet Avoidable with $u_{y} >$ 4.5 when extracting at $G\gamma = -10.5$
- ullet Unvoidable with $u_{ extsf{ iny}} <$ 4.5 when extracting at $G\gamma = -10.5$

Overview of Possible Booster Configurations

- ▶ Extract at $G\gamma = -7.5$ or -10.5
- ▶ Avoid 6+ by ramping ν_y above 4.5

PyZgoubi

Zgoubi[7]

- ► Powerful and versatile accelerator simulation engine.
- ► Well established and widely used.

PyZgoubi[8]

- ▶ Python wrapper for Zgoubi.
- ► Uses the same Zgoubi engine but with python syntax at the top level.
- ► Access to Python modules and packages.

[7]F. Meot. Zgoubi User's Guide. CA/AP Note no 470. October, 2012.

[8] S. Tygier et al. The PyZgoubi Framework and the Simulation of Dynamic Aperture in Fixed-Field Alternating Gradient Accelerators. Nuclear Instruments and Methods in Physics. Volume 775, pages 15-26. March, 2015.

AC-Dipole

Make a large betatron oscillation at frequency near resonance to induce full spin-flip. $\delta = \nu_y - (k - \nu_m)$, I=20 cm, AC dipole field and frequency are B_m and ν_y .[9]

$$Z_{coh} = \frac{B_m I}{4\pi\delta \ B\rho} \beta_z \tag{1}$$

Figure : Left: Ramp used for the AC-dipole. $\delta = -0.01$. Right: Center of bunch prior to AC dipole turning on (green). Center of bunch for 200 turns with AC dipole at full strength.

Ramp rate is chosen to provide $G\gamma = -(12 - \nu_{v} - 0.1)$ at start of ramp.

AC-Dipole expected results

Expected requirements of AC-dipole when using analytical results.[9]

	0+	12 - $(\nu_y > 4.5)$	12 - $(\nu_y < 4.5)$	6+
$\overline{\ G\gamma}$	-4.7	-7.3	-7.8	-10.4
$B\rho$ [T m]	2.37	6.69	7.36	10.6
$\epsilon \left[arepsilon_{N}=4\pi ight]$	0.0171	0.0096	0.0103	0.0170
$B_m I [Gm]$	21.6	32.2	34.46, 30.6	46.7, 42.2

[9] M. Bai, S. Y. Lee, H. Huang, T. Roser, M. Syphers. Overcoming the Intrinsic Spin Resonance using Resonance Island created by RF Dipole. AGS/RHIC/SN no 055 May 5, 1997.

Available Aperture

Limiting aperture in vertical plane is from the dipole vacuum pipe, ± 3.5 cm.

Figure: Left: Cartoon showing available aperture in the Booster over a small area. Right: Image showing the maximum allowed emittance particle for various AC Dipole strengths.

Conclusion

Spin Tracking Results

Two sets of bunched beam tracking, Gaussian and truncated Gaussian.

Figure : Gaussian bunch (blue), truncated Gaussian bunch (green), $\varepsilon_N = 4\pi$.

AC Dipole On vs Off

Figure : Example for 12- resonance. AC dipole off (green) $P_{f,ACoff} = -80\%$, AC Dipole on(blue) $P_{f,ACon} = -99\%$.

Spin Tracking Results 0+

Figure : Example for 0+ resonance. Ensemble average of S_y with Gaussian bunch, $B_m I = 21.6$ Gm, $P_f = -99\%$.

Spin Tracking Results 12-

Figure : Example for 12- resonance. Left: Ensemble average of S_y with Gaussian bunch, $B_m I = 34$ Gm, $P_f = -99\%$. Right: Ensemble average of S_y with truncated Gaussian bunch, $B_m I = 18$ Gm. Beam was cut to 1σ to simulate scraping, $P_f = -98\%$.

Spin Tracking Results 6+

Figure : Examples for 6+ resonance. Left: Ensemble average of S_y with Gaussian bunch, $B_m I = 44.0~Gm,~P_f = -99\%$. Right: Ensemble average of S_y with truncated Gaussian bunch, $B_m I = 24~Gm$. Beam was cut to 1σ to simulate scraping, $P_f = -99\%$.

Spin Tracking Results

	1 2- $ u_{m{y}}$	$ 6+\nu_y $
$\epsilon[arepsilon_{\mathcal{N}}=4\pi]$	0.0103	0.0170
$\sigma_y[mm][Gaussian]$	5.87	4.88
$B_m I [G m][Gaussian]$	33.9 (34.5)	44.0 (46.7)
$\varepsilon_{ratio}[Gaussian]$	1.00	1.06
$B_m I [G m][Truncated]$	16.0	24.0
$\varepsilon_{ratio}[Truncated]$	1.00	1.00

Table : $B_m I$ shows strong agreement with theory (values in ()).

Conclusion

- ▶ Manageable hurdles that can be overcome.
 - ▶ Booster extraction + AGS injection power supplies.
 - ▶ Need to increase range 14%.
 - ▶ Negligible difference between AC-dipole requirements for 6 and 2 modules with the BMMPS.
 - ▶ BMMPS has exceeded design by 10% with 2 modules. Might be possible with 6.
 - ► AC-dipole is effective.
 - ► Can we improve the emittance?
 - ▶ Extraction at $G\gamma$ =-10.5 is ideal to minimize optics distortions at low $B\rho$ and inject above 0+ in AGS.
 - ▶ Can we ramp from $\nu_y < 4.5$ to $\nu_y > 4.5$ to avoid 6+ all together?

Questions

Questions?

- S. Y. Lee. Spin Dynamics and Snakes in Synchrotrons. World Scientific 1997.
- H. Huang et al. Overcoming Depolarizing Resonances in the AGS with Two Helical Partial Siberian Snakes. Particle Accelerator Conference 2007 Proceedings June, 2007
- Lin. Towards Full Preservation of Polarization of Proton Beams in AGS. PhD Thesis, Indiana University December, 2007.
- F. Meot. Transport of Polarized He3 in Booster and AGS. BNL C-AD Spin Meeting November, 2015
- K. Gardner. Injector Setup for Helions in RHIC. BNL C-AD Spin Meeting November, 2015
- E. Bleser. Booster Short Quadrupole Measurements. Booster Technical Note no 174 September 12, 1990.
- F. Meot. Zgoubi User's Guide. CA/AP Note no 470. October, 2012
- S. Tygier et al. The PyZgoubi Framework and the Simulation of Dynamic Aperture in Fixed-Field Alternating Gradient Accelerators. Nuclear Instruments and Methods in Physics. Volume 775, pages 15-26. March, 2015.
- M. Bai, S. Y. Lee, H. Huang, T. Roser, M. Syphers. Overcoming the Intrinsic Spin Resonance using Resonance Island created by RF Dipole. AGS/RHIC/SN no 055 May 5, 1997.

Extra Slides

Abilitiy to recover emittance with AC-Dipole

Figure : $B_x L = 14 Gm$ for a $\varepsilon = 10\pi$ particle. This data justifies a separation of 0.01 from ν_y .