Development of deuterated polymer polarized targets materials

^{1,2}L.Wang, ¹W.Meyer,

¹Ch.Hess, ¹E.Radtke, ¹A.Berlin, ¹J.Herick, ¹G.Reicherz,

¹Institut of Experimental Physics AG I, Ruhr-University Bochum, Bochum, D-44780, Germany

²Physics Department, School of Science, Donghua University, Shanghai, 200051, China

³N.Doshita, ³K.Kondo, ³T.Iwata,

³Physics Department, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan

⁴N.Horikawa

⁴College of Engineering Chubu University, Kasugai, 487-850, Japan

Content

- I. Dynamic polarized solid target (DNP) for particle physics experiments
- 2. The trityl radicals progress for deuterated target materials
- 3. D-polymer materials: CD₂ and C₈D₈
- 4. The Bochum DNP-apparatus
- 5. ERP investigation and Polarization results for
 - trityl radical doped CD₂ C₈D₈
- 6. Conclusion and outlook

Polarized Solid Targets

- Used in high energy particle physics experiments for studying the nucleon structure since about 50 years
- Present target materials for high energy spin physics experiments:

ullet Physics observable determined by single or double asymmetry measurements A

$$A = \frac{1}{P_T} \cdot \frac{1}{f} \cdot \frac{N \uparrow - N \downarrow}{N \uparrow + N \downarrow} \qquad f = \frac{\text{\#polarizable particles}}{\text{\#all particles}}$$

$$P_T$$
: target polarization

$$N \uparrow, \downarrow$$
: counting rates for spin \uparrow, \downarrow to magnetic field

$$f = 0.1 \dots 0.3 \dots 0.5$$

The Principle of Dynamic Nuclear Polarization

Thermal Equilibrium (TE)

$$P = \frac{\langle I_Z \rangle}{I_Z^{\text{max}}} = B_I \left(\frac{\mu B}{2kT} \right) \quad \infty \left(\frac{B}{T} \right)$$

B/T	P _p [%]	P _d [%]	Pe[%]
2.5T/1K	0.25	0.05	93
15T/10mK	91	30	100

Dynamic Nuclear Polarization (DNP)

- Transfer of polarization from paramagnetic electrons to the nuclei
- Parameters of DNP: temperature; magnetic field; microwave power; electron relaxation time; the relation of EPR linewidth and nuclear Larmor frequency...

Doping with paramagnetic electrons:

- ~ 10³ nuclei feeded by 1 unpaired electron from:
 - ▲ Chemically stable radical → Solids
 - ▲ Radiation induced defects → Solids

In the 1970 already 80-90% in protonated materials
Until 2003 40-50% in deuterated materials

The Trityl Radicals (Malmö Group(Sweden); General Electric)

— Important Progress for Deuterated Materials

Finland D36'(AH110355 deutero acid form) used for butanol-d10

Deuteron: up to 79% at 150mK/2.5T

0x063 (AH100136 sodium salt) used for propandiol-d8

Deuteron: up to 81% at 150mK/2.5T

Ox063Me (AH 111 501 sodium salt) used for pyruvic acid

¹³C: up to **74%** at 900mK/5.0T

St.Goertz et al.NIMA 526 (2004)43

W.Meyer, et al., NIM A 631 (2011) 1

Important parameter: EPR linewidth

Zeeman Energy of a free electron

$$E_Z = -g_e \mu_B \vec{S} \cdot \vec{B}$$

Contributions to the Electron Zeeman linewidth

$$\Delta E_{tot} = \underbrace{\mu_B(\vec{S} \cdot \hat{g} \cdot \vec{B}) + (\vec{S} \cdot A \cdot \vec{I})}_{in \text{ hom}} + E_D$$

 $Hom. \longrightarrow Dipol-Dipol interaction \longrightarrow between electrons$ $Inhom. \longrightarrow Hyperfine interaction \longrightarrow magnetic nuclei \longrightarrow indep. of Bo$ $Inhom. \longrightarrow g-factor anisotropy \longrightarrow crystal field \longrightarrow dep. of Bo$

- > Try to minimize the energy spread ΔE_{tot}
 - Find a suitable doping method $\longrightarrow \Delta E_{HFS} \sim \Delta E_{D}$
 - Try radiation doping if only low μ nuclei

Bochum measurements

Material	Radical	$\Delta g/\bar{g} \ [10^{-3}]$	FWHM [mT]	at 2.5T P _{D,max} [%]
D-Butanol	EDBA	5.98 ± 0.03	12.30 ± 0.20	26
D-Butanol	TEMPO	3.61 ± 0.13	5.25 ± 0.15	34
D-Butanol	Porphyrexide	4.01 ± 0.15	5.20 ± 0.23	32
¹⁴ ND ₃	$^{14}\dot{N}D_2$	≈ 2 3	4.80 ± 0.20	44
¹⁵ ND ₃	$^{15}\dot{N}D_2$	≈ 2 3	3.95 ± 0.15	-
D-Butanol	Hydroxyalkyl	1.25 ± 0.04	3.10 ± 0.20	55
⁶ LiD	F-center	0.0	1.80 ± 0.01	57
D-Butanol	Finland D36	0.50 ± 0.01	1.28 ± 0.03	79
D-Propandiol	Finland H36	0.47 ± 0.01	0.97 ± 0.04	-
D-Propandiol	OX063	0.28 ± 0.01	0.86 ± 0.03	81

J. Heckmann, et al., Phys. Rev. B 74 (2006) 134418.

Result: The smaller the EPR linewidth, the higher the deuteron polarization value.

Introduction to D-polymer materials

Poly(Ethylene-D4) CD₂

Styrene-D8, polymerized C8D8

dilution factor

$$f = \frac{8 \operatorname{from D}}{24 \operatorname{from C} + 8 \operatorname{from D}} = 0.25$$

$$f = \frac{16 \text{ from D}}{96 \text{ from C} + 16 \text{ from D}} = 0.14$$

Motivation to use D-polymer materials

Spin physics

- Thin targets for scattering experiments at low energies
- Polarized scintillator targets

Merits of CD₂, C₈D₈

- 1. High purity of D 0.98, 0.99
- 2. D with spin 1 and C with spin 0
- 3. Easy formable to any thickness at room temperature

Up to now the maximum polarizations of D-polymer

D-polyethylene CD₂: Paramagnetic Center---Irradiation
 35% at 6.5T/1K

D.G.Crabb, *Nucl. Instr. and Meth. A* 526, 56 (2004)

D-Polystyrene C₈D₈: Paramagnetic Center---D-TEMPO
 40% at 2.5 T/100mK

B.van den Brandt, et al., Nucl. Instr. and Meth. A 526, 53 (2004)

Doping methods for DNP

- Mechanism of Dynamic Nuclear Polarization Paramagnetic centers are needed
- Chemical (Tempo, Trityl radical) doping

Melting point 36°C Boiling point 67°C

HOOC S S COOH

CD₃ CD₃ CD₃ CD₃
S COOH

CD₃ CD₃ CD₃
CD₃ CD₃
CD₃ CD₃
CD₃ CD₃
CD₃ CD₃
CD₃ CD₃
CD₃ CD₃
COOH

Trityl radicals Finland D36 (stable free radical)

Tempo (stable free radical)

Irradiation with electron beam

The Bochum EPR Apparatus

The Bochum DNP Apparatus Magnet+cryostat

Preparation of trityl radical in CD2

➤ Introduce Finland D36 Radicals in CD2

Polarization of Finland D36-doped CD2

◆ The build-up curve shows that the unpaired electrons of the radicals are not well coupled with the CD₂, which leads to a low polarization.

Preparation of trityl radical in C₈D₈

Introduce Finland D36 Radicals in C8D8

Homogenous and transparent A thin foil (70µm)

0.18mT

336

336.5

Polarization of Finland D36-doped C₈D₈

	Spin conc.	Mag. Field	$T_{build-up}$	$T_{l,d}$	Microwave Freq.	d-pol.	f^+ - f^-
	(spins/g)	(T)	(min)	(min)	(GHz)	(%)	(MHz)
_	0.87×10^{19}	2.5	76	80(T=1.01K)	69.877	+10.2	56
					69.933	-12.5	
_	1.16×10^{19}	5.0	47	139(T=0.99K)	139.736	+29.5	92
					139.828	-31.0	

Polarization of Finland D36-doped C₈D₈

Temperature = 400mK Magnetic field= 5.0 T

Sample	MW (GHz)	d-pola. (%)	T _{l,d} (min)	T _{build-up} (min)
d-PS(98%-d) +Finland D36	139.723 139.825	+56.1 -61.5	863	100

 $f_{d,NMR}$ =32.6MHz

Li Wang, et al., NIM A 729 (2013) 36

Deuteron Polymer Polarizations

Material Doping	Material Doping Magnetic field(T)		Temperature	$T_{I,d}$	FWHM-bolometric
	2.5	5			
	Polarization(%)		_	(min)	(mT)
CD ₂ Irradiation (8.0 × 10 ¹⁵ e ⁻ /cm ²	+ 21.1 - 31.1		150mK		
CD2 Tempo (3.0×10 ¹⁹ spins/cm	+ 11.1 ³) - 9.3		330mK		
C ₈ D ₈ Tempo (2.3 x 10 ¹⁹ spins/g)	+ 7.3 - 7.7		1 K	12	6.73 <i>(2.5T)</i>
C ₈ D ₈ Trityl (1.16× 10 ¹⁹ spins/g)	+ 11.8) - 12.3		1 K	24	1.87 <i>(2.5T)</i>
C ₈ D ₈ Trityl (1.16× 10 ¹⁹ spins/g))	+ 29.5 - 31.0	1 K	139	3.06 ^(5.0T)
C ₈ D ₈ Trityl (1.16× 10 ¹⁹ spins/g))	- 61.5 + 56.1	400mK	863	

Conclusion & Outlook

- 1 Concerning CD₂ material, chemical doping method with TEMPO or Trityl Finland D36, there are no remarkable polarization values obtained. The problem of Finland D36 seems to be its solubility into the solvent.
- 2 Chemically doped C₈D₈ with trityl radical can be polarized to more than 30% at 5.0T/1K and more than 60% at 5.0T/400mK with potential to values higher than 80%. But the dilution factor is much lower than that of C₈D₈.
- 3. A new approach for C₂D₂ with trityl radical doping is needed.

a new method called "mechanical doping"

nano - level

Ball mill P7 made by Fritsch

Thanks for your attention!

EPR spectra of Radiation-doped CD₂

According to HFS, I I-line pattern corresponds to 5 adjacent D, $m = 5, 4, 3 \dots - 5$

Polarization of radiation-doped CD₂

NMR Signal of Deuteron

Temperature = 150mK Magnetic field=2.5T

Dose [e ⁻ /cm ²]	DNP Temp.[mK]	$\mathbf{f}_{mw}[\mathrm{GHz}]$	d-Pol[%]	$T_{build-up}[min.]$	f+-f- [MHz]
6.0×10^{15}	150	69.860	+21.0	110	215
		70.075	-31.0		

$$P = \frac{r^2 - 1}{r^2 + r + 1}, r = \frac{I_R}{I_L}$$

^{*}The large difference of positive and negative polarization values is still not understood.

EPR spectra of irradiated CH2 and CD2 at 77K

➤ According to HFS, 6-line pattern conresponds to 5 adjacent H,

$$m = \frac{5}{2}, \frac{3}{2}, \frac{1}{2} \dots - \frac{5}{2}$$

Alkyl-radical

The Solid State Effect

EPR spectra of Finland D36-doped C₈D₈

X-band

Bolometric

 $\nu = 9.4GHz$

1.45e + 04

1.4e + 04

- ► Introduce Finland D36 Radicals in C8D8 🐧 1.3e+04
- 1. dissolve C₈D₈ polymer in toluene
- 2. dissolve Finland D36 in isobutanol
- 3. mix and evaporate solvents

ESR D-Styrol 2% Finland D36

FWHM=3.06mT

Polarized target system

- ❖ Cooling system ~ 100mK
- ❖ Magnet system 2.50T

C-yoke normal conduction magnet (JM-611made by JEOL)

homogeneity:

 2×10^{-4} (ø70mm $\times25$ mm)

❖ Microwave system 70GHz

Oscillator: 68.5GHz-71.5GHz 150mW

(IMPATT- 47134H-1115 made by HUGHES)

NMR measurement system

Larmor frequency of D: 16.35MHz

Digital Synthesizer: 1MHz-250MHz

Accuracy: 0.1MHz

(PTS250 made by PTS inc.)

ESR linewidth and shape

Zeeman Energy of a free electron

$$E_Z = -g_e \mu_B \vec{S} \cdot \vec{B}$$

Contributions to the Electron Zeeman linewidth

$$\Delta E_{tot} = \underbrace{\mu_B(\vec{S} \cdot \hat{g} \cdot \vec{B}) + (\vec{S} \cdot A \cdot \vec{I})}_{in \text{hom}} + E_D$$

 $Hom. \longrightarrow Dipol-Dipol interaction \longrightarrow between electrons$ $Inhom. \longrightarrow Hyperfine interaction \longrightarrow magnetic nuclei \longrightarrow indep. of Bo$ $Inhom. \longrightarrow g-factor anisotropy \longrightarrow crystal field \longrightarrow dep. of Bo$

- \succ Try to minimize the energy spread ΔE_{tot}
 - Find a suitable doping method $\longrightarrow \Delta E_{HFS} \sim \Delta E_{D}$
 - Try radiation doping if only low μ nuclei present

DNP Mechanism $CW\&B \le 5T$

▶ Depend on the relationship of δ , Δ and ω_{nr}

Solid Effect (SE)
$$\delta, \Delta < \omega_{0I}$$

Cross effect (CE)
$$\delta$$
 $<$ $\omega_{\!\scriptscriptstyle 0I}$, Δ $>$ $\omega_{\!\scriptscriptstyle 0I}$

Thermal mixing (TM)
$$\delta \approx \omega_{0I}$$

 δ a homogeneous EPR linewidth

Cross effect (CE) $\delta < \omega_{0I}$, $\Delta > \omega_{0I}$ an inhomogeneous EPR linewidth

 ω_{o_I} the nuclear Larmor frequency

Contributions to the Electron Zeeman linewidth

$$\Delta E_{tot} = \underbrace{\mu_B(\vec{S} \cdot \hat{g} \cdot \vec{B}) + (\vec{S} \cdot A \cdot \vec{I})}_{in \text{ hom } \Delta} + E_D$$

Hom. Dipol-Dipol interaction between electrons

Inhom. — Hyperfine interaction — magnetic nuclei — indep. of Bo

Inhom. \longrightarrow g-factor anisotropy \longrightarrow crystal field \longrightarrow dep. of B₀

The Spin Temperature Theory

Deuteron with rather small gyromagnetic ratio

Thermal Mixing is DNP mechanism for deuteron enhancement

Nucleus	y/2π (MHz.T ⁻¹)
¹H	42.576
² H	6.536
³ He	-32.434
⁷ Li	16.546
¹³ C	10.705
¹⁴ N	3.077
¹⁵ N	-4.316
¹⁷ O	-5.772
¹⁹ F	40.053
²³ Na	11.262
³¹ P	17.235
¹²⁹ Xe	-11.777

Three spin exchange process:

EZS-EDS-NZS

$$P_{I,\text{max}} = \mathbf{B}_{iI} \left(I \beta_L \omega_e \frac{\omega_I}{2D} \frac{1}{\sqrt{\eta (1+f)}} \right)$$

$$eta_L = \hbar/kT_L$$
 $h\delta = g_e \mu_B D$ $\eta = t_z/t_D$ f : a leakage factor 1

The smaller EPR linewidth, the higher polarization

Polarized Deuteron Targets Materials

Material	Doping F method	Polarization	Field
⁶ LiD	Irradiation	> 50%	2.5T
D-butanol	Irradiation	55%	2.5T
		71%	5.0T
D-butanol	chem. dop.	79%	2.5T
D- propanediol	with trityl	81%	2.5T

Butanol with Porphyrexide

Ammonia

6LiD

Butanol with CrV

Radiation-doping of CD₂ foil

Find an optimal radiation dose

- 7MeV electron beam (Osaka Uni.) beam spot ø60mm×20mm
- Irradiation dose ~10¹⁴ ~10¹⁷e⁻/cm²
- Irradiation at liquid Nitrogen 77K
- CD₂ foil thickness 40 μm density 0.93 g/cm³

Sample	[e ⁻ /cm ²]	Spin density [e ⁻ /g]	Irradiation temp. [K]
a	3.0×10^{14}	1.8×10^{18}	77
b	7.0×10^{14}	2.7×10^{18}	77
c	4.0×10^{15}	1.9×10^{19}	77
d	6.0×10^{15}	2.3×10^{19}	90
e	8.0×10^{15}	3.2×10^{19}	77
f	1.0×10^{16}	3.6×10^{19}	77
g	1.2×10^{16}	4.0×10^{19}	90
h	5.0×10^{16}	2.3×10^{20}	77
i	1.0×10^{17}	1.4×10^{21}	77

Introduce Trityl radical

> Trityl radical as dopant for D-Butanol

Boiling point >200°C

Very stable radical CD₃ CD₃ CD₃ CD₃ COOH

HOOC S S CD₃ COOH

CD₃ CD₃ S CD₃ CD₃

CD₃ CD₃ S CD₃

CD₃ CD₃ CD₃ CD₃ CD₃

CD₃ CD₃ CD₃ CD₃

CD₃ CD₃ CD₃ CD₃ CD₃

CD₃ CD₃ CD₃ CD₃ CD₃

CD₃ CD₃ CD₃ CD₃ CD₃ CD₃

CD₃ CD₃ CD₃ CD₃ CD₃ CD₃

CD₃ CD₃ CD₃ CD₃ CD₃ CD₃ CD₃

CD₃ CD₃ CD₃ CD₃ CD₃ CD₃ CD₃

CD₃ CD₃

Trityl radicals Finland D36

Weak g-factor anisotropy in D-Butanol

D-Butanol:

