Development of deuterated polymer polarized targets materials ^{1,2}L.Wang, ¹W.Meyer, ¹Ch.Hess, ¹E.Radtke, ¹A.Berlin, ¹J.Herick, ¹G.Reicherz, ¹Institut of Experimental Physics AG I, Ruhr-University Bochum, Bochum, D-44780, Germany ²Physics Department, School of Science, Donghua University, Shanghai, 200051, China ³N.Doshita, ³K.Kondo, ³T.Iwata, ³Physics Department, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan ⁴N.Horikawa ⁴College of Engineering Chubu University, Kasugai, 487-850, Japan ## Content - I. Dynamic polarized solid target (DNP) for particle physics experiments - 2. The trityl radicals progress for deuterated target materials - 3. D-polymer materials: CD₂ and C₈D₈ - 4. The Bochum DNP-apparatus - 5. ERP investigation and Polarization results for - trityl radical doped CD₂ C₈D₈ - 6. Conclusion and outlook # Polarized Solid Targets - Used in high energy particle physics experiments for studying the nucleon structure since about 50 years - Present target materials for high energy spin physics experiments: ullet Physics observable determined by single or double asymmetry measurements A $$A = \frac{1}{P_T} \cdot \frac{1}{f} \cdot \frac{N \uparrow - N \downarrow}{N \uparrow + N \downarrow} \qquad f = \frac{\text{\#polarizable particles}}{\text{\#all particles}}$$ $$P_T$$: target polarization $$N \uparrow, \downarrow$$: counting rates for spin \uparrow, \downarrow to magnetic field $$f = 0.1 \dots 0.3 \dots 0.5$$ ## The Principle of Dynamic Nuclear Polarization #### Thermal Equilibrium (TE) $$P = \frac{\langle I_Z \rangle}{I_Z^{\text{max}}} = B_I \left(\frac{\mu B}{2kT} \right) \quad \infty \left(\frac{B}{T} \right)$$ | B/T | P _p [%] | P _d [%] | Pe[%] | |----------|--------------------|--------------------|-------| | 2.5T/1K | 0.25 | 0.05 | 93 | | 15T/10mK | 91 | 30 | 100 | #### Dynamic Nuclear Polarization (DNP) - Transfer of polarization from paramagnetic electrons to the nuclei - Parameters of DNP: temperature; magnetic field; microwave power; electron relaxation time; the relation of EPR linewidth and nuclear Larmor frequency... #### Doping with paramagnetic electrons: - ~ 10³ nuclei feeded by 1 unpaired electron from: - ▲ Chemically stable radical → Solids - ▲ Radiation induced defects → Solids In the 1970 already 80-90% in protonated materials Until 2003 40-50% in deuterated materials #### The Trityl Radicals (Malmö Group(Sweden); General Electric) #### — Important Progress for Deuterated Materials Finland D36'(AH110355 deutero acid form) used for butanol-d10 Deuteron: up to 79% at 150mK/2.5T 0x063 (AH100136 sodium salt) used for propandiol-d8 Deuteron: up to 81% at 150mK/2.5T Ox063Me (AH 111 501 sodium salt) used for pyruvic acid ¹³C: up to **74%** at 900mK/5.0T St.Goertz et al.NIMA 526 (2004)43 W.Meyer, et al., NIM A 631 (2011) 1 ## Important parameter: EPR linewidth Zeeman Energy of a free electron $$E_Z = -g_e \mu_B \vec{S} \cdot \vec{B}$$ Contributions to the Electron Zeeman linewidth $$\Delta E_{tot} = \underbrace{\mu_B(\vec{S} \cdot \hat{g} \cdot \vec{B}) + (\vec{S} \cdot A \cdot \vec{I})}_{in \text{ hom}} + E_D$$ $Hom. \longrightarrow Dipol-Dipol interaction \longrightarrow between electrons$ $Inhom. \longrightarrow Hyperfine interaction \longrightarrow magnetic nuclei \longrightarrow indep. of Bo$ $Inhom. \longrightarrow g-factor anisotropy \longrightarrow crystal field \longrightarrow dep. of Bo$ - > Try to minimize the energy spread ΔE_{tot} - Find a suitable doping method $\longrightarrow \Delta E_{HFS} \sim \Delta E_{D}$ - Try radiation doping if only low μ nuclei ## **Bochum measurements** | Material | Radical | $\Delta g/\bar{g} \ [10^{-3}]$ | FWHM [mT] | at 2.5T
P _{D,max} [%] | |-------------------------------|-------------------|--------------------------------|------------------|-----------------------------------| | D-Butanol | EDBA | 5.98 ± 0.03 | 12.30 ± 0.20 | 26 | | D-Butanol | TEMPO | 3.61 ± 0.13 | 5.25 ± 0.15 | 34 | | D-Butanol | Porphyrexide | 4.01 ± 0.15 | 5.20 ± 0.23 | 32 | | ¹⁴ ND ₃ | $^{14}\dot{N}D_2$ | ≈ 2 3 | 4.80 ± 0.20 | 44 | | ¹⁵ ND ₃ | $^{15}\dot{N}D_2$ | ≈ 2 3 | 3.95 ± 0.15 | - | | D-Butanol | Hydroxyalkyl | 1.25 ± 0.04 | 3.10 ± 0.20 | 55 | | ⁶ LiD | F-center | 0.0 | 1.80 ± 0.01 | 57 | | D-Butanol | Finland D36 | 0.50 ± 0.01 | 1.28 ± 0.03 | 79 | | D-Propandiol | Finland H36 | 0.47 ± 0.01 | 0.97 ± 0.04 | - | | D-Propandiol | OX063 | 0.28 ± 0.01 | 0.86 ± 0.03 | 81 | J. Heckmann, et al., Phys. Rev. B 74 (2006) 134418. **Result:** The smaller the EPR linewidth, the higher the deuteron polarization value. ## Introduction to D-polymer materials Poly(Ethylene-D4) CD₂ Styrene-D8, polymerized C8D8 #### dilution factor $$f = \frac{8 \operatorname{from D}}{24 \operatorname{from C} + 8 \operatorname{from D}} = 0.25$$ $$f = \frac{16 \text{ from D}}{96 \text{ from C} + 16 \text{ from D}} = 0.14$$ ## Motivation to use D-polymer materials ## Spin physics - Thin targets for scattering experiments at low energies - Polarized scintillator targets ## Merits of CD₂, C₈D₈ - 1. High purity of D 0.98, 0.99 - 2. D with spin 1 and C with spin 0 - 3. Easy formable to any thickness at room temperature ## Up to now the maximum polarizations of D-polymer D-polyethylene CD₂: Paramagnetic Center---Irradiation 35% at 6.5T/1K D.G.Crabb, *Nucl. Instr. and Meth. A* 526, 56 (2004) D-Polystyrene C₈D₈: Paramagnetic Center---D-TEMPO 40% at 2.5 T/100mK B.van den Brandt, et al., Nucl. Instr. and Meth. A 526, 53 (2004) ## **Doping methods for DNP** - Mechanism of Dynamic Nuclear Polarization Paramagnetic centers are needed - Chemical (Tempo, Trityl radical) doping Melting point 36°C Boiling point 67°C HOOC S S COOH CD₃ CD₃ CD₃ CD₃ S COOH CD₃ COOH Trityl radicals Finland D36 (stable free radical) Tempo (stable free radical) Irradiation with electron beam # The Bochum EPR Apparatus The Bochum DNP Apparatus Magnet+cryostat # Preparation of trityl radical in CD2 #### ➤ Introduce Finland D36 Radicals in CD2 # Polarization of Finland D36-doped CD2 ◆ The build-up curve shows that the unpaired electrons of the radicals are not well coupled with the CD₂, which leads to a low polarization. ## Preparation of trityl radical in C₈D₈ Introduce Finland D36 Radicals in C8D8 Homogenous and transparent A thin foil (70µm) 0.18mT 336 336.5 # Polarization of Finland D36-doped C₈D₈ | | Spin conc. | Mag. Field | $T_{build-up}$ | $T_{l,d}$ | Microwave Freq. | d-pol. | f^+ - f^- | |---|-----------------------|------------|----------------|--------------|-----------------|--------|---------------| | | (spins/g) | (T) | (min) | (min) | (GHz) | (%) | (MHz) | | _ | 0.87×10^{19} | 2.5 | 76 | 80(T=1.01K) | 69.877 | +10.2 | 56 | | | | | | | 69.933 | -12.5 | | | _ | 1.16×10^{19} | 5.0 | 47 | 139(T=0.99K) | 139.736 | +29.5 | 92 | | | | | | | 139.828 | -31.0 | | ## Polarization of Finland D36-doped C₈D₈ Temperature = 400mK Magnetic field= 5.0 T | Sample | MW
(GHz) | d-pola.
(%) | T _{l,d} (min) | T _{build-up} (min) | |-----------------------------|--------------------|----------------|------------------------|-----------------------------| | d-PS(98%-d)
+Finland D36 | 139.723
139.825 | +56.1
-61.5 | 863 | 100 | $f_{d,NMR}$ =32.6MHz Li Wang, et al., NIM A 729 (2013) 36 # Deuteron Polymer Polarizations | Material Doping | Material Doping Magnetic field(T) | | Temperature | $T_{I,d}$ | FWHM-bolometric | |--|-----------------------------------|------------------|-------------|-----------|------------------------| | | 2.5 | 5 | | | | | | Polarization(%) | | _ | (min) | (mT) | | CD ₂ Irradiation
(8.0 × 10 ¹⁵ e ⁻ /cm ² | + 21.1
- 31.1 | | 150mK | | | | CD2 Tempo
(3.0×10 ¹⁹ spins/cm | + 11.1
³) - 9.3 | | 330mK | | | | C ₈ D ₈ Tempo
(2.3 x 10 ¹⁹ spins/g) | + 7.3
- 7.7 | | 1 K | 12 | 6.73 <i>(2.5T)</i> | | C ₈ D ₈ Trityl
(1.16× 10 ¹⁹ spins/g) | + 11.8
) - 12.3 | | 1 K | 24 | 1.87 <i>(2.5T)</i> | | C ₈ D ₈ Trityl
(1.16× 10 ¹⁹ spins/g) |) | + 29.5
- 31.0 | 1 K | 139 | 3.06 ^(5.0T) | | C ₈ D ₈ Trityl
(1.16× 10 ¹⁹ spins/g) |) | - 61.5
+ 56.1 | 400mK | 863 | | #### **Conclusion & Outlook** - 1 Concerning CD₂ material, chemical doping method with TEMPO or Trityl Finland D36, there are no remarkable polarization values obtained. The problem of Finland D36 seems to be its solubility into the solvent. - 2 Chemically doped C₈D₈ with trityl radical can be polarized to more than 30% at 5.0T/1K and more than 60% at 5.0T/400mK with potential to values higher than 80%. But the dilution factor is much lower than that of C₈D₈. - 3. A new approach for C₂D₂ with trityl radical doping is needed. # a new method called "mechanical doping" nano - level Ball mill P7 made by Fritsch # Thanks for your attention! ## EPR spectra of Radiation-doped CD₂ According to HFS, I I-line pattern corresponds to 5 adjacent D, $m = 5, 4, 3 \dots - 5$ ## Polarization of radiation-doped CD₂ #### NMR Signal of Deuteron ## Temperature = 150mK Magnetic field=2.5T | Dose [e ⁻ /cm ²] | DNP Temp.[mK] | $\mathbf{f}_{mw}[\mathrm{GHz}]$ | d-Pol[%] | $T_{build-up}[min.]$ | f+-f- [MHz] | |---|---------------|---------------------------------|----------|----------------------|-------------| | 6.0×10^{15} | 150 | 69.860 | +21.0 | 110 | 215 | | | | 70.075 | -31.0 | | | $$P = \frac{r^2 - 1}{r^2 + r + 1}, r = \frac{I_R}{I_L}$$ ^{*}The large difference of positive and negative polarization values is still not understood. #### EPR spectra of irradiated CH2 and CD2 at 77K ➤ According to HFS, 6-line pattern conresponds to 5 adjacent H, $$m = \frac{5}{2}, \frac{3}{2}, \frac{1}{2} \dots - \frac{5}{2}$$ Alkyl-radical ## **The Solid State Effect** #### EPR spectra of Finland D36-doped C₈D₈ #### X-band ## Bolometric $\nu = 9.4GHz$ 1.45e + 04 1.4e + 04 - ► Introduce Finland D36 Radicals in C8D8 🐧 1.3e+04 - 1. dissolve C₈D₈ polymer in toluene - 2. dissolve Finland D36 in isobutanol - 3. mix and evaporate solvents ESR D-Styrol 2% Finland D36 FWHM=3.06mT # Polarized target system - ❖ Cooling system ~ 100mK - ❖ Magnet system 2.50T C-yoke normal conduction magnet (JM-611made by JEOL) #### homogeneity: 2×10^{-4} (ø70mm $\times25$ mm) ❖ Microwave system 70GHz Oscillator: 68.5GHz-71.5GHz 150mW (IMPATT- 47134H-1115 made by HUGHES) NMR measurement system Larmor frequency of D: 16.35MHz Digital Synthesizer: 1MHz-250MHz Accuracy: 0.1MHz (PTS250 made by PTS inc.) ## ESR linewidth and shape Zeeman Energy of a free electron $$E_Z = -g_e \mu_B \vec{S} \cdot \vec{B}$$ Contributions to the Electron Zeeman linewidth $$\Delta E_{tot} = \underbrace{\mu_B(\vec{S} \cdot \hat{g} \cdot \vec{B}) + (\vec{S} \cdot A \cdot \vec{I})}_{in \text{hom}} + E_D$$ $Hom. \longrightarrow Dipol-Dipol interaction \longrightarrow between electrons$ $Inhom. \longrightarrow Hyperfine interaction \longrightarrow magnetic nuclei \longrightarrow indep. of Bo$ $Inhom. \longrightarrow g-factor anisotropy \longrightarrow crystal field \longrightarrow dep. of Bo$ - \succ Try to minimize the energy spread ΔE_{tot} - Find a suitable doping method $\longrightarrow \Delta E_{HFS} \sim \Delta E_{D}$ - Try radiation doping if only low μ nuclei present #### **DNP** Mechanism $CW\&B \le 5T$ ▶ Depend on the relationship of δ , Δ and ω_{nr} Solid Effect (SE) $$\delta, \Delta < \omega_{0I}$$ Cross effect (CE) $$\delta$$ $<$ $\omega_{\!\scriptscriptstyle 0I}$, Δ $>$ $\omega_{\!\scriptscriptstyle 0I}$ Thermal mixing (TM) $$\delta \approx \omega_{0I}$$ δ a homogeneous EPR linewidth Cross effect (CE) $\delta < \omega_{0I}$, $\Delta > \omega_{0I}$ an inhomogeneous EPR linewidth ω_{o_I} the nuclear Larmor frequency #### Contributions to the Electron Zeeman linewidth $$\Delta E_{tot} = \underbrace{\mu_B(\vec{S} \cdot \hat{g} \cdot \vec{B}) + (\vec{S} \cdot A \cdot \vec{I})}_{in \text{ hom } \Delta} + E_D$$ Hom. Dipol-Dipol interaction between electrons Inhom. — Hyperfine interaction — magnetic nuclei — indep. of Bo Inhom. \longrightarrow g-factor anisotropy \longrightarrow crystal field \longrightarrow dep. of B₀ ## **The Spin Temperature Theory** Deuteron with rather small gyromagnetic ratio Thermal Mixing is DNP mechanism for deuteron enhancement | Nucleus | y/2π (MHz.T ⁻¹) | |-------------------|-----------------------------| | ¹H | 42.576 | | ² H | 6.536 | | ³ He | -32.434 | | ⁷ Li | 16.546 | | ¹³ C | 10.705 | | ¹⁴ N | 3.077 | | ¹⁵ N | -4.316 | | ¹⁷ O | -5.772 | | ¹⁹ F | 40.053 | | ²³ Na | 11.262 | | ³¹ P | 17.235 | | ¹²⁹ Xe | -11.777 | Three spin exchange process: EZS-EDS-NZS $$P_{I,\text{max}} = \mathbf{B}_{iI} \left(I \beta_L \omega_e \frac{\omega_I}{2D} \frac{1}{\sqrt{\eta (1+f)}} \right)$$ $$eta_L = \hbar/kT_L$$ $h\delta = g_e \mu_B D$ $\eta = t_z/t_D$ f : a leakage factor 1 The smaller EPR linewidth, the higher polarization # Polarized Deuteron Targets Materials | Material | Doping F
method | Polarization | Field | |-------------------|--------------------|--------------|-------| | ⁶ LiD | Irradiation | > 50% | 2.5T | | D-butanol | Irradiation | 55% | 2.5T | | | | 71% | 5.0T | | D-butanol | chem. dop. | 79% | 2.5T | | D-
propanediol | with trityl | 81% | 2.5T | Butanol with Porphyrexide Ammonia 6LiD Butanol with CrV #### Radiation-doping of CD₂ foil #### Find an optimal radiation dose - 7MeV electron beam (Osaka Uni.) beam spot ø60mm×20mm - Irradiation dose ~10¹⁴ ~10¹⁷e⁻/cm² - Irradiation at liquid Nitrogen 77K - CD₂ foil thickness 40 μm density 0.93 g/cm³ | Sample | [e ⁻ /cm ²] | Spin density [e ⁻ /g] | Irradiation temp. [K] | |--------|------------------------------------|----------------------------------|-----------------------| | a | 3.0×10^{14} | 1.8×10^{18} | 77 | | b | 7.0×10^{14} | 2.7×10^{18} | 77 | | c | 4.0×10^{15} | 1.9×10^{19} | 77 | | d | 6.0×10^{15} | 2.3×10^{19} | 90 | | e | 8.0×10^{15} | 3.2×10^{19} | 77 | | f | 1.0×10^{16} | 3.6×10^{19} | 77 | | g | 1.2×10^{16} | 4.0×10^{19} | 90 | | h | 5.0×10^{16} | 2.3×10^{20} | 77 | | i | 1.0×10^{17} | 1.4×10^{21} | 77 | #### **Introduce Trityl radical** #### > Trityl radical as dopant for D-Butanol #### Boiling point >200°C Very stable radical CD₃ CD₃ CD₃ CD₃ COOH HOOC S S CD₃ COOH CD₃ CD₃ S CD₃ CD₃ CD₃ CD₃ S CD₃ Trityl radicals Finland D36 Weak g-factor anisotropy in D-Butanol #### D-Butanol: