fsPHENIX:

A Detector Evolution for the Study of Nucleon Spin Structure and Cold Nuclear Matter at RHIC

Outline

- The RHIC Cold QCD Plan
 - Physics opportunities in spin and CNM
- Forward Physics in RHIC's future
- sPHENIX and the fsPHENIX concept
- Conclusions

RHIC Cold QCD Plan

 Requested by DOE, submitted Feb 2016

Emerging Spin and Transverse Momentum Effects

- Subject of RBRC workshop
- Lays out a comprehensive set of important measurements to be made on the road to an EIC

http://arxiv.org/abs/1602.03922

in pp and p+A Collisions

RIKEN BNL Research Center Workshop

Physics Goals From Cold QCD Plan

Key Physics Measurements:

- Jets in polarized p+p (510 GeV):
 - Kinematics limited in p+p 200 (transverse), better kinematic reach at 510 GeV
 - Jet A_N , angular distribution in jets (h good proxy for π w/o PID)

For many of these measurements RHIC offers *unique* capabilities

- DY and Direct Photons in p+A:
 - Measurements of saturation, A-scan required
- Diffraction in polarized p+p (200 GeV):
 - A_{UT} from single-diffractive events (pol. proton breaks up).
- Ultraperipheral Collisions in p+Au:
 - p-shine (unpolarized): gluon impact parameter distribution via J/ Ψ
 - Au-shine (polarized): access GPD E_g via J/Ψ production (A_{UT})
 - Set the scale for a program to measure GPD $E_{\rm g}$ at the EIC

Jets and Polarized Jet Structure

Nuclear Fragmentation Functions

Hadron production in e+A suppressed compared to e+p

Kaufmann, Mukherjee and Vogelsang Phys.Rev.D 92 5, 054015

Access fragmentation functions (FF) through p+p(A) -> (jet h) X

Diffraction/UPC

Data taken in 2015/17 by STAR will elucidate the diffractive contribution to A_N a RHIC.

UPC collisions in p+A will allow study of:

- The gluon spatial distribution in nuclei ("proton shine")
- The gluon helicity flip Generalized Parton Distribution (GPD) E_g ("A-shine")

Requires Roman Pots, good t-acceptance and high luminosity

A Timeline for the LHC and RHIC

9/27/2016 Spin 2016

- Uniform acceptance $|\eta|<1.1$ and $0<\phi<2\pi$
- Superconducting solenoid high resolution tracking
 - Acquired the BaBar solenoid!
- Compact electromagnetic calorimeter allowing fine segmentation at a small radius
- Hadronic calorimeter doubling as flux return
- Solid state photodetectors that work in a magnetic field, low cost, do not require high voltage, are physically small
- Common readout electronics in the calorimeters
- 15 kHz recorded in A+A allows for large unbiased data sample
- High resolution tracking within an 80 cm radius
- Utilization of infrastructure in an existing experimental hall (cranes, rails, beam pipe, power, network...)

Current sPHENIX Magnet Design

Current sPHENIX design well-suited to forward instrumentation!

A New Possibility – fsPHENIX!

- The sPHENIX plug door is compatible with a forward detector suite!
- Implement "forward sPHENIX":
 - GEM trackers and FEMC in magnetic field volume
 - PHENIX EMCal (PbSc) -> FEMC
 - FHCAL outside plug door
 - Plug door could be as thin as ~10cm
 - Magnetic field shaper piston
 - Roman Pots in beamline
 - Fits in 4.5m eRHIC IR constraint

Pb/Sc sandwich hadronic calorimeter (NEW) $10 \times 10 \times 100 \text{ cm}^3$ towers $(1.2 < \eta < 4.0)$

20x20 array of 2.2 x 2.2 x 18 cm³ PbW (PHENIX MPC) crystals with 10x10 square hole (300 crystals total) $3.0-3.3 < \eta < 4.0$

PHENIX PbSc modules (5.5 x 5.5 x 33 cm³) organized in groups of four modules (3152 modules or 788 groups of 4) $(1.4 < \eta < 3.0-3.3)$

Jet Energy Resolution

Jets from 510 GeV Pythia8, using jet trigger, jet energy is correlated with pseudorapidity. Required E>20GeV, p_T>5GeV.

Jet resolution worsens at high n as the tower size gets comparable to the cone size. (A 10cm x 10cm FHCAL tower is $\Delta \eta \sim 0.5 \text{ at } \eta = 3.5.$

Forward Tracking

- Large area GEM tracking stations at z=120, 150, 275cm (1.45 < η < 4.0)
 - Space left between ST1 and 2 for future PID
- Additional passive field shaper piston to enhance field shape for improved momentum resolution at high η.

Forward GEM Trackers

Florida Institute of Technology (FIT)

- Recently submitted a results of their large area (~1 m) triple-GEM detector to NIM A for publication.
- Successfully used zig-zag readout as a means to maintain good sp atial resolution while reducing number of readout channels needed
- $\sigma_{\omega} = 193 \, \mu rad$

NIM A 811 (2016) 30-41

Temple University (TU)

- Have been working with US company Tech-Etch towards commercializing la rge-area GEM foils.
- Recently published results of electrical and geometrical foil quality

NIM A 802 (2015) 10-15

NIM A 808 (2016) 83-92

University of Virgina (UVa)

- Recently published results on their large-area (~1 m)/ light weight triple GEM detector
- The detector successfully implemented 2D stereo -angle (U-V strips) readout
- $\sigma_r = 550 \, \mu m, \, \sigma_{\omega} = 60 \, \mu rad$

Strong tie-ins with existing EIC R&D efforts!

What About Heavy Ions?

- Extended coverage for <u>both</u> calorimetry and tracking.
 - $-1.1 < \eta < 4.0$
- Opportunity to extend the study of longitudinal dynamics in HI collisions:

- No new data since PHOBOS/BRAHMS
- State-of-the-art hydro fails to explain PHOBOS high rapidity hydro needs to know longitudinal dynamics!
- Particle correlations over a wide rapidity range could shed light on the very initial stages of a HI collision

A Detector Evolution

Conclusions

- There is a wealth of unexplored physics in the forward region at RHIC!
- sPHENIX is a major new project that will make available probes of the Quark Gluon Plasma with unprecedented precision.
- An option for additional forward instrumentation added to sPHENIX (fsPHENIX) is being actively explored.
 - Extend the sPHENIX physics program to include p+p/p+A as well as longitudinal dynamics in HI collisions
 - Substantial re-use of existing detector systems for calorimetry
 - Tie-ins with EIC R&D as well as re-use of equipment for future EIC detector
 - A "Cold QCD" Topical Group recently formed in sPHENIX
 - Pushing towards a new fsPHENIX LOI in 2017

No longer left blank...

BACKUP

Forward Physics with STAR

• The existing (or soon to exist) STAR detector already has significant forward capabilities:

STAR 2020+

Similar physics calls for similar instrumentation....

afanatan

Lots of opportunities for collaboration between STAR and fsPHENIX!

Tracking:

Silicon mini-strip detector 3-4 disks at z ~70 to 140 cm Each disk has wedges covering full 2π range in ϕ and 2.5-4 in η (other options still under study)