Transverse single asymmetries in π^{0} production in $\mathrm{p}+\mathrm{p}, \mathrm{p}+\mathrm{Al}$ and $\mathrm{p}+\mathrm{Au}$ collisions at mid-rapidity using the PHENIX detector system

Norbert Novitzky
Stony Brook University

Transverse Spin

Large asymmetries in the forward π^{0} :

$$
A_{N}=\frac{\sigma_{L}^{\pi}-\sigma_{R}^{\pi}}{\sigma_{L}^{\pi}+\sigma_{R}^{\pi}}
$$

Persists to high collision energies

PRD90, 012006 (2014)

p_{T} dependent distributions

Sivers Effect (Phys.Rev.D41,83):
Introduce transverse momentum of parton relative to proton.

Collins Effect (Nucl.Phys.B396,161): Introduce transverse momentum of fragmenting hadron relative to parton.

Correlation between Proton spin $\left(S_{p}\right)$ and parton transverse momentum $\mathrm{k}_{\mathrm{T}, \mathrm{p}}$
$\bar{f}_{1 T}^{\perp q}\left(x, k_{T, P}^{2}\right) \cdot D_{q}^{h}(z)$

Correlation between Proton spin $\left(S_{p}\right)$ and quark spin $\left(S_{q}\right)+$ spin dep. frag. function

$$
\delta q(x) \cdot H_{1}^{\perp}\left(z_{2}, \bar{k}_{\perp}^{2}\right)
$$

Higher twist correlation functions

- QCD, collinear partons
- Multiple parton scattering

Higher twist interaction contributions expected to drop like $1 / p_{T}$

p_{T} large, $\mathrm{A}_{\mathrm{N}} \sim 1 / \mathrm{p}_{\mathrm{T}}$

Asymmetry in mid-rapidity

$p+p \sqrt{s}=200 \mathrm{GeV}$

PRD90, 012006 (2014)

The asymmetry of π^{0} and η in midrapidity:

- Both agree very well
- Consistent with zero within errors

How does it change from $p+p$ to $p+A$ collisions?

Already some surprises, see
Neutron A_{N} M. Kim's talk (Tuesday) $J / \psi A_{N}$ C. Xu's talk (Tuesday)

π^{0} reconstruction with PHENIX

Background region on left and right side of the peak

Transverse asymmetry:

$$
A_{N}=\frac{1}{P} \frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

Signal/Background:

- Estimated by mix-event technique
- Assuming the background A_{N} under the π^{0} mass has no mass dependency

Extracting the signal asymmetry:

$$
A_{N}^{S}=\frac{N_{S+B}}{N_{\pi}} A_{N}^{S+B}-\frac{N_{B}}{N_{\pi}} A_{N}^{B}
$$

- $N_{S+B}=$ number of counts in π^{0} mass window
- $N_{\pi}=$ number of π^{0} counts
- $N_{B}=$ number of background counts in π^{0} window

A_{N} in $\mathrm{p}+\mathrm{p}$

$$
\mathrm{p}+\mathrm{p} \rightarrow \pi^{0}+\mathrm{X} @ 200 \mathrm{GeV}, \mathrm{l} \mid<0.35
$$

- Factor of 3 increase precision in the statistical uncertainty with the previous result, precision at low $\mathrm{p}_{\mathrm{T}}<3 \times 10^{-4}$
- Higher p_{T} reach
- A_{N} is consistent with zero within uncertainties
- Mid-rapidity $\pi^{0} A_{N}$ has been used to constrain the Sivers gluon function:
- Anselmino et al, PRD 74, 094011 (2006)
- U. D’Alesio, F. Murgia, C. Pisano, JHEP 09, 119 (2015)

A_{N} in $\mathrm{p}+\mathrm{Au}$ and $\mathrm{p}+\mathrm{Al}$ in midrapidity

A_{N} in $p+A$ collisions
@ 200 GeV in midrapidity:

- Asymmetry is
- The precision in lowp_{T} is $<10^{-3}$

A_{N} versus A

Atomic Number [A]

Integrated A_{N} for $p_{T}>4 \mathrm{GeV} / \mathrm{c}$

- In pQCD region in mid-rapidity
- Combined result for $\mathrm{p}+\mathrm{p}, \mathrm{p}+\mathrm{Al}$ and $\mathrm{p}+\mathrm{Au}$
- The asymmetry is consistent with zero (<3 x 10-3)
- Potential to constrain theoretical models using pA collisions

Forward and Mid-rapidity π^{0}

slide from Christopher Dilks (STAR)

The π^{0} asymmetries are comparable from $p+p$ to $\mathrm{p}+\mathrm{Au}$ (Al) collisions

Summary

- The $\pi^{0} A_{N}$ in mid-rapidity in $p+p, p+A u$ and $p+A l$ collisions at sqrt(s) $=$ 200 GeV was measured by PHENIX:
- All asymmetries are consistent with zero
- Higher p_{T} reach as previously measured $p+p$ result
- Factor of 3 higher precision in $p+p$, low- $p_{T}<4 \times 10^{-4}$
- precision at low $-p_{T}$ in $p+A<10^{-3}$
- π^{0} transverse asymmetry from $p+p$ to $p+A$ are comparable in mid(PHENIX) or forward-rapidity (STAR)
- The π^{0} production in $p+p$ vs $p+A\left(R_{p A}\right)$ will answer outstanding question considering nuclear effects
- Theoretical input for the mid-rapidity π^{0} asymmetries is needed

Backup

Gluon Sivers function

U. D’Alesio, F. Murgia, C. Pisano, JHEP 09, 119 (2015)

Gluon Sivers at COMPASS

- Deuteron is zero within the uncertainties:

The central value is negative with similarly large error

- Proton is negative to 3σ precision

Also comparable with the deuteron result within uncertainties

$\pi^{0} \mathrm{~A}_{\mathrm{N}}$ in $\mathrm{p}+\mathrm{A}$ collisions

Kang, Yuan: PRD84, 034019
Kovchegov, Sievert: PRD86, 034028

