

The MUSE experiment and the Proton Radius

Cristina Collicott SPIN 2016

The Proton Radius Puzzle

How big is the proton?

- Easy question to ask, not so easy to answer!
- Currently an unanswered problem in physics

The Proton Radius Puzzle

What is the proton radius puzzle?

The proton charge radius, measured via muonic hydrogen spectroscopy, is 4% smaller than results from hydrogen spectroscopy and elastic electron proton scattering experiments.

The Proton Radius Puzzle - scattering

Rosenbluth scattering:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{\text{(point.)}}} \left(\begin{array}{c} \frac{G_{\text{E}}^2(Q^2) + xG_{\text{M}}^2(Q^2)}{1+x} + 2xG_{\text{M}}^2(Q^2) \tan^2\!\frac{\theta}{2} \end{array} \right)$$

$$x = \left(\frac{hq}{2Mc}\right)^2$$

Sach's form factors

(F₁, F₂ Dirac and Pauli FFs)

$$G_E(Q^2) = F_1(Q^2) - xF_2(Q^2)$$

 $G_E(Q^2) = F_1(Q^2) - xF_2(Q^2)$

The Proton Radius Puzzle - scattering

Rosenbluth scattering:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{\text{(point.)}}} \left(\begin{array}{c} \frac{G_E^2(Q^2) + x G_M^2(Q^2)}{1 + x} + 2x G_M^2(Q^2) \tan^2 \frac{\theta}{2} \end{array} \right)$$

$$x = \left(\frac{hq}{2Mc}\right)^2$$

Derivative in the $Q^2 \rightarrow 0$ limit

$$< r_E^2 > = -6 \frac{dG_E(Q^2)}{dQ^2} \Big|_{Q^2 \to 0}$$

The Proton Radius Puzzle - scattering

Rosenbluth scattering:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{\text{(point.)}}} \left(\begin{array}{c} \frac{G_{\text{E}}^2(Q^2) + xG_{\text{M}}^2(Q^2)}{1+x} + 2xG_{\text{M}}^2(Q^2) \tan^2\frac{\theta}{2} \end{array} \right)$$

$$x = \left(\frac{hq}{2Mc}\right)^2$$

Derivative in the $Q^2 \rightarrow 0$ limit

$$< r_E^2 > = -6 \frac{dG_E(Q^2)}{dQ^2} \bigg|_{Q^2 \to 0}$$

We expect identical results for experiments with ep and $\mu \mathbf{p}$ scattering...

The Proton Radius Puzzle: electron scattering

Zhan et al., PLB705, 59 (2011)

Kelly, Phys. Rev. C70, (2004)

Significant experimental interest in the Form Factors!

The Proton Radius Puzzle: electron scattering

Electron scattering experiments give a fairly consistent extraction of the proton radius of approximately 0.88 fm.

The Proton Radius Puzzle: H spectroscopy

Radius can also be studied from a spectroscopy approach:

Two Unknowns → Two transitions!

- Rydberg constant: R_{∞}
- Lamb Shift: L_{15} (< r_p^2 >)

$$E_{nS} \approx \frac{R_{\infty}}{n^2} + \frac{L_{1S}}{n^3}$$

$$L_{1S}(r_p) = 8171.636(4) + 1.5645 < r_p^2 > MHz$$

The Proton Radius Puzzle: H spectroscopy

Radius can also be studied from a spectroscopy approach: Again we find a radius consistent with 0.88 fm.

The Proton Radius Puzzle: Muonic Hydrogen

Why is muonic Hydrogen interesting?

The Proton Radius Puzzle: μ H spectroscopy

Pohl et al., Nature 466 (2010) A. Antognini et al., Science 339 (2013)

Pohl (2010):

 $r_p = 0.84184 \pm 0.00067 \text{ fm}$

Antognini (2013):

 $r_p = 0.84087 \pm 0.00039 \text{ fm}$

The Proton Radius Puzzle: μ H spectroscopy

Proton radius puzzle

Hydrogen: $r_p = 0.88$ fm μ -Hydrogen: $r_p = 0.84$ fm

Pohl (2010):

$$r_p = 0.84184 \pm 0.00067 \; \mathrm{fm}$$

Antognini (2013):

$$r_p = 0.84087 \pm 0.00039 \text{ fm}$$

The Proton Radius Puzzle: What about muon scattering?

r_p from muonic-H and electronic-H

 μ -**p v. e-p elastic difference** Kostoulas et al. PRL 32 (1974)

 $\sigma(\mu - p)/\sigma(e - p) \approx 1.0 \pm 0.04 \,(\pm 8.6\% \,\text{systematics})$ A. Entenberg et al (1974)

Ellsworth et al. Phys. Rev. 165 (1968)

Previous scattering experiments confirm universality to 10% level.

Insufficient precision to test proton radius issues!

Resolutions to the Puzzle

Experimental problems?

e-p problems

- underestimated uncertainties
- incorrect radius extractions

μ -p problems

3-body effects

New physics?

- Lepton non-universality
- New force / particle (dark photon?)
- Two-photon exchange
- ...
- \rightarrow New (high-quality) data is needed to solve the puzzle.

MUSE - MUon Scattering Experiment

World's most powerful proton beam!

- Secondary e \pm , $\mu\pm$, $\pi\pm$ in $\pi M1$ beamline
- Planned momenta coverage: (115, 153, and 210) MeV/c.
- Q^2 range of ≈ 0.002 0.07 GeV²
- Separate out particle species by timing relative to beam RF
- Cut as many pions as possible, trigger on $e\pm$, $\mu\pm$

MUSE - MUon Scattering Experiment: Detector Overview

Beamline:

- Beam species ID/tracking via beam line detectors (SiPMs/GEMs).
- Vetos reject large π -induced background (beam line decays).

Scattered particle detectors:

- Straw Tube Tracker detector (2850 channels).
- Scattered particle scintillators (184 channels).
- Scattering angle coverage: $20^{\circ} \rightarrow 100^{\circ}$.

MUSE - MUon Scattering Experiment: Beamline

Scintillating SiPM Detector Array (Tel Aviv, Rutgers, PSI)

→ Thin, fast, scintillators, double-ended SiPM readout

GEM Chambers (Hampton)

- → Inherited from OLYMPUS
- \rightarrow < 10 mr resolution

Beam spot measured with GEM VerticalPosition (cm) 1.014 500 400 300 200 100 RMS: 1 cm X 0.8 cm

MUSE - MUon Scattering Experiment: Scattering Det.

Straw Tube Tracker (HUJI, Temple)

- \rightarrow Position/angular res. 140 μ m/1mr
- \rightarrow Same design tested with PANDA

Scintillator Walls (USC)

- ightarrow 92 bars, double-ended readout
- $\rightarrow 100~\text{cm}/200~\text{cm front/back bars}$

15/17

MUSE - MUon Scattering Experiment: Projections

MUSE - MUon Scattering Experiment: Projections

Summary

The proton radius puzzle is a high profile problem in physics! (still unresolved)

MUSE (MUon Scattering Experiment) will provide high quality e-p/ μ -p scattering data allowing for direct comparison of proton charge radius with reduced systematics.

Up Next: Discussion of PRad!

Backups – What about the deuterium?

RESEARCH ARTICLE

Laser spectroscopy of muonic deuterium

Randolf Pohl^{1,2,*}, François Nez², Luis M. P. Fernandes⁴, Fernando D. Amaro⁴, François Biraben³, João M. R. Cardoso ⁴, Daniel S. Covita⁵, Andreas Dax⁶, Satish Dhawan⁶, Marc Diepold¹, Adolf Glesen^{7,8,†}, Andrea L. Gouvea⁴, Thomas Graf⁷, Theodor W. Hänsch^{1,9}, Paul Indelicato³, Lucile Julien³, Paul Knowles^{10,‡}, Franz Kottmann¹¹, Eric-Olivier Le Bigot³, Yi-Wei Liu¹², José A. M. Lopes^{4,13}, Livia Ludhova^{10,§}, Cristina M. B. Monteiro⁴, Françoise Mulhauser^{10,14}, Tobias Nebel^{1,†}, Paul Rabinowitz¹⁴, Joaquim M. F. dos Santos⁴, Lukas A. Schaller¹⁰, Karsten Schumann^{11,8,15}, Catherine Schwob⁵, David Taqqu¹⁵, João F. C. A. Veloso⁵, Aldo Antognini^{1,11,15}, The CREMA Collaboration

Quote:

We measured three 2S-2P transitions in μd and obtain r_d [···] 7.5 σ smaller than the CODATA-2010 value r_d . The μd value is also 3.5 σ smaller than the r_d value from electronic deuterium spectroscopy.

Backups – What about TPE?

JLab (polarization transfer technique) showed a linear drop in the ratio of G_E/G_M with Q^2 from unity.

ightarrow TPE to explain

Compare $\mu + /\mu -$ and e + /e - ratios:

- TPE opposite sign for switched polar.
- TPE dominates uncertainty of radiative corrections for μ (not e)
- Ratios $(\mu + /\mu \text{ and } e + /e -) \cdots$ some systematics cancel ()

Evie Downie

0.1% u: 0.5%

0.3%

0.1%

Backups - Error Budget

MUSE	Error	Bud	get
------	-------	-----	-----

MUSE measuring relative cross sections

Point-to-point uncertainties, most important

Uncertainties mostly well controlled: largest from angle and radiative corrections.

Scintillator efficiency 0.1%
Solid angle 0.1%
Beam momentum 0.1%
offset
Theta offset 0.2%
Multiple scattering 0.15%
Muon decay in flight 0.1%

Radiative corrections

Target wall subtraction

Beam PID mis-ID

Have six settings and two independent detectors, consistency check