Proton Charge Radius (PRad) Experiment at Jefferson Lab¹

Weizhi Xiong

Duke University

For the PRad Collaboration

In order to investigate the proton radius puzzle, the PRad experiment $(E12-11-106^2)$ was recently performed with 1.1 and 2.2 GeV unpolarized electron beam on a windowless H₂ gas flow target in Hall B at Jefferson Lab. The experiment aims to extract the electric form factor of proton in an unprecedented low four-momentum transfer squared region, Q^2 = $2 \times 10^{-4} - 0.1 \ (\text{GeV/c})^2$, with a sub-percent precision. The PRad experiment utilizes a non-magnetic calorimetric method with a high efficiency and high resolution calorimeter (HyCal), and two world-largest, high spatial resolution Gas Electron Multiplier (GEM) detectors. The systematic uncertainties are well controlled by two main advantages of this experiment: (1) The absolute e - p elastic scattering cross section will be normalized to the well-known Møller scattering process, which is measured simultaneously within similar kinematics and experimental acceptances; (2) The gas flow target has no cell windows at both up- and downstream, which was one of the primary background sources in the previous e - p elastic scattering experiments. Thus the PRad experiment has systematic uncertainties totally different from the previous magnetic spectrometric e - p elastic scattering experiments. In this talk, we will present the details of the experiment and preliminary analysis of the 1.1 GeV and 2.2 GeV data.

¹This work is supported in part by the U.S. Department of Energy under Contract No. DE-FG02-03ER41231, NSF MRI award PHY-1229153, Thomas Jefferson National Laboratory and Duke University

²Spokespersons: A. Gasparian (contact), H. Gao, M. Khandaker, D. Dutta