

Proton Charge Radius (PRad) Experiment at Jefferson Lab

Weizhi Xiong

Duke University

For the PRad Collaboration

Spokespersons: A. Gasparian(contact person), D. Dutta, M. Khandaker, H. Gao

SPIN 2016

Septempter 27th, 2016

Outline

- The proton charge radius puzzle
- PRad experiment at Jefferson Lab
 - Experimental goal and approach
 - PRad apparatus
 - Collected data
- Preliminary online analysis results

Proton Charge Radius Puzzle

- Electronic measurement (ep elastic + ordinary H spectroscopy) v.s. muonic measurement (muonic H spectroscopy)
- μp Lamb shift measurements by CREMA (2010, 2013)
 - Unprecedented precision, <0.1%
 - 7σ away from CODATA 2012 recommended value
- New preliminary result from ordinary H spectroscopy (from PRP 2016 Trento) seems to agree with muonic measurement
- The discrepancy is not understood yet. New experiments with different systematics are necessary

Proton Charge Radius from ep Elastic Scattering

• Elastic ep scattering, in the limit of Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE' \sin^2 \frac{\theta}{2}$$
 $\tau = \frac{Q^2}{4M_p^2}$ $\varepsilon = \left[1 + 2(1+\tau)\tan^2 \frac{\theta}{2}\right]^{-1}$

• Structure-less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

- G_E and G_M can be extracted using Rosenbluth separation
- For PRad, cross section dominated by G_E

Taylor expansion of G_E at low Q²

$$G_E^p(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$

Derivative at low Q² limit

$$\left\langle r^2 \right\rangle = - \left. 6 \, \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0} \label{eq:constraint}$$

PRad Experiment Overview

- PRad goal: Measuring proton charge radius using ep elastic scattering
- Unprecedented low Q² (~2x10⁻⁴ GeV²)
 - Fill in very low Q² region
- Large Q² range in a single setting
 - ~2x10⁻⁴ 6x10⁻² GeV²
- Calibrate to the simultaneously measured Møller scattering process
 - best known control of systematics
- Aims to extract cross section and radius to sub-percentage level

PRad Experiment Overview

- PRad goal: Measuring proton charge radius using ep elastic scattering
- Unprecedented low Q² (~2x10⁻⁴ GeV²)
 - Fill in very low Q² region
- Large Q² range in a single setting
 - ~2x10⁻⁴ 6x10⁻² GeV²
- Calibrate to the simultaneously measured Møller scattering process
 - best known control of systematics
- Aims to extract cross section and radius to sub-percentage level

Jefferson Lab CEBAF Accelerator Facility

PRad Experimental Apparatus

- Windowless, high density H₂ gas flow target (background control)
- Vacuum box, one thin window at downstream
- High resolution and high efficiency, Hybrid calorimeter (HyCal)
- Two large area Gas Electron Multipliers, improve position resolution

Windowless Gas Target

Hybrid Calorimeter (HyCal)

- Used in the PrimEx experiment
- PbWO₄ and Pb-glass calorimeter (118x118 cm²)
- 576 Pb-glass modules (3.82x3.82 cm² x45 cm)
- 1152 PbWO₄ modules (2.05x2.05 cm² x18 cm)
- 5.8 m from the target
- Polar angle coverage: ~ 0.5° to 7.5°
- Azimuthal angle coverage: 2π

PbWO₄ resolution: $\sigma_E/E = 2.6\%/\sqrt{E}$ $\sigma_{xy} = 2.6 \text{ mm}/\sqrt{E}$

Pb-glass: 2.5 times worse

Gas Electron Multipliers (GEM)

- Two large area GEM detectors with 2D Cartesian readout planes
- \sim 100 μ m position resolution
- The GEM detectors can provide:
 - >20 times improvement on position resolution
 - Similar improve for Q² resolution at small angle

PRad in Jefferson Lab Hall B

Beam-side view

Experimental Data Collected

- Experiment ran in May June 2016
- Large amount of data taken with high quality and stable electron beam from CEBAF
 - Beam position stability: ~250 μm
 - Beam width: ~ 25 μm
- Data taking with 1.1 GeV beam:
 - 604 M events with H₂ in cell
 - 53 M events without H₂ in cell
 - 25 M events with 1µm carbon foil target
 - Collected 4.2 mC on target (2x10¹⁸ H atoms/cm²)
- Data taking with 2.2 GeV beam
 - 756 M events with H₂ in cell
 - 38 M events without H₂ in cell
 - 10.5 M events with 1µm carbon foil target
 - Collected 14.3 mC on target (2x10¹⁸ H atoms/cm²)

Example electron beam profile at target (measured with harp scan)

Preliminary Online Analysis Results

Cluster E vs Scattering Angle θ

Preliminary Online Analysis Results

Cluster E vs Scattering Angle $\boldsymbol{\theta}$

Preliminary Online Analysis Results

 Good Q² resolution and large statistics at low Q² will allow finer binning

The PRad Collaboration

Jefferson Lab. **NC A&T State University, Duke University.** Idaho State University, Mississippi State University, Norfolk State University. **University of Virginia** University of North Carolina at Wilmington, **Old Dominion University.** University of Kentucky, College of William & Mary, **Argonne National Lab**, **Hampton University** Tsinghua University, China ITEP, Moscow, Russia **Budker Institute of Nuclear Physics, Russia** MIT

Graduate students
Chao Peng (Duke)
Li Ye (MSU)
Weizhi Xiong (Duke)
Xinzhan Bai (UVa)
Abhisek Karki (MSU)

Post-docs
Mehdi Meziane (Duke)
Zhihong Ye (Duke)
Krishna Adhikari (MSU)
Maxime Lavillain (NC A&T)
Rupesh Silwal (MIT)

Summary

- The Proton Radius Puzzle is still unsolved after six years
- The PRad experiment is a unique piece to the puzzle:
 - Lowest Q² data set (~2x10⁻⁴ GeV) has been collected for the first time in ep elastic scattering experiment
 - Data in a large Q² range (~2x10⁻⁴ 6x10⁻² GeV²) have been collected with the same experimental setting
 - Large statistics, high quality, rich data has been collected
 - Systematic uncertainty well under control by simultaneous measurement of epelastic and Møller processes
- Analysis on the first preliminary result is ongoing

This work was supported in part by NSF-MRI grant PHY-1229153 and US DOE grant DE-FG02-03ER41231