Matching for quasi parton distribution functions

Tomomi Ishikawa
(RBRC -> Shanghai Jiao Tong University)

in collaboration with:
Yan-Qing Ma, Jian-Wei Qiu and Shinsuke Yoshida
[arXiv:1609.02018]

22nd International Spin Symposium (Sept 25-30, 2016) University of Illinois, Urbana-Champaign, IL

Outline

- Introduction
- Collinear factorization and PDFs
- PDFs from lattice
- Quasi PDFs
- Renormalization of non-local operator
- Power divergence subtraction scheme
- Matching of quasi distributions between continuum and lattice
- One-loop perturbation
- Effects of link smearing
- Summary and outlook

Collinear factorization and PDFs

- Collinear factorization - a key concept in PQCD
$\sigma^{\mathrm{DIS}}\left(x, Q^{2}, \sqrt{s}\right)=\sum_{\alpha=q, \bar{q}, g} C_{\alpha}\left(x, \frac{Q^{2}}{\mu^{2}}, \sqrt{s}\right) \otimes f_{\alpha}\left(x, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{Q^{2}}\right)$
x : Bjorken-x, Q : momentum transfer, \sqrt{s} : collision energy
μ : factorization scale
- Parton Distribution Functions (PDFs)
- Probability density for finding a particle with a certain longitudinal momentum fraction x of proton.
- Absorb all perturbative collinear divergences.
- Non-perturbative.
- Universal.

Global QCD analysis

- Extract PDFs from experiment data

Global QCD analysis with lattice QCD

- Extract PDFs from lattice

PDFs from lattice

- Quark distribution by light-cone operator

$$
\begin{gathered}
q(x, \mu)=\int \frac{d \xi^{-}}{2 \pi} e^{-i x P^{+} \xi^{-}}\langle\mathcal{N}(P)| O\left(\xi^{-}\right)|\mathcal{N}(P)\rangle \\
O\left(\xi^{-}\right)=\bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{+}\left(\xi^{-}, 0\right) \psi(0)
\end{gathered}
$$

- $\xi^{ \pm}=(t \pm z) / \sqrt{2}$: light-cone coordinate
- Time-dependent. \Rightarrow Not calculable on the lattice directly.
- Moments

$$
\begin{gathered}
a_{n}=\int_{0}^{1} d x x^{n-1} q(x)=\frac{1}{P^{\mu_{1}} \cdots P^{\mu_{n}}}\langle\mathcal{N}(P)| O^{\left\{\mu_{1} \cdots \mu_{n}\right\}}|\mathcal{N}(P)\rangle \\
O^{\left\{\mu_{1} \cdots \mu_{n}\right\}}=\bar{\psi}(0) \gamma^{\left\{\mu_{1}\right.} i \overleftrightarrow{D}^{\mu_{2}} \cdots i \overleftrightarrow{\left.D^{\mu_{n}}\right\}} \psi(0)
\end{gathered}
$$

- Written in local operators. Calculable on lattice (in principle).
- But, higher moments are difficult to be accessed.

Quasi-PDFs [Ji (2013)]

- Quasi distributions

$$
\begin{aligned}
& \widetilde{q}\left(\tilde{x}, \mu, P_{z}\right)=\int \frac{d \delta z}{2 \pi} e^{-i \tilde{x} P_{z} \delta z}\left\langle\mathcal{N}\left(P_{z}\right)\right| \widetilde{O}(\delta z)\left|\mathcal{N}\left(P_{z}\right)\right\rangle \\
& \widetilde{O}(\delta z)=\bar{\psi}(\delta z) \gamma^{z} U_{z}(\delta z, 0) \psi(0)
\end{aligned}
$$

- Separated in spatial z-direction. Calculable on lattice.
- In the limit of $P_{z} \rightarrow \infty$, normal distributions are recovered.
- Matching (Large Momentum Effective Theory)

$$
\widetilde{q}\left(x, \Lambda, P_{z}\right)=\int \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\Lambda}{P_{z}}, \frac{\mu}{P_{z}}\right) q(y, \mu)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}, \frac{M^{2}}{P_{z}^{2}}\right)
$$

- Z can be perturbatively obtained.
- Large P_{z} is required for small corrections.

QCD collinear factorization approach

[Ma and Qiu (2014)]

- Going back to the collinear factorization

$$
\sigma^{\mathrm{DIS}}\left(x, Q^{2}, \sqrt{s}\right)=\sum_{\alpha=q, \bar{q}, g} C_{\alpha}\left(x, \frac{Q^{2}}{\mu^{2}}, \sqrt{s}\right) \otimes f_{\alpha}\left(x, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{Q^{2}}\right)
$$

All CO divergences are factorized into the PDFs with PT hard coefficients.

- Lattice calculable cross section

$$
\widetilde{\sigma}\left(x, \widetilde{\mu}^{2}, P_{z}\right)=\sum_{\alpha=q, \bar{q}, g} \widetilde{C}_{\alpha}\left(x, \frac{\widetilde{\mu}^{2}}{\mu^{2}}, P_{z}\right) \otimes f_{\alpha}\left(x, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\widetilde{\mu}^{2}}\right)
$$

All CO divergences are factorized into the PDFs with PT hard coefficients.

$$
\begin{array}{rlll}
\mu & \longleftrightarrow & \mu & \text { (factorization scale) } \\
Q & \longleftrightarrow & \widetilde{\mu} & \text { (resolution) } \\
\sqrt{s} & \longleftrightarrow P_{z} & \text { (parameter) }
\end{array}
$$

Lattice quasi-PDFs, so far

- Two calculations in LMET approach

[Chen et al., NPB911(2016)246]

[Alexandrou et al.,
PRD92(2015)014502]

$32^{3} \times 64, N_{f}=2+1+1$ Twisted Mass
$a \sim 0.082 \mathrm{fm}(2.4 \mathrm{GeV}), m_{\mathrm{PS}} \sim 370 \mathrm{MeV}$

- Exploratory study.
- Two calculations look consistent with each other.

Renormalization

- Renormalization of Wilson lines

$$
W_{\mathcal{C}}=Z_{z} e^{\delta m \ell(\mathcal{C})} W_{\mathcal{C}}^{\mathrm{ren}}
$$

- Well-known. [Dotsenko, Vergeles, Arefeva, Craigie, Dorn, ... ('80)]
- δm : mass renormalization of a test particle moving along \mathcal{C}

All the power divergence is contained.

- Auxiliary z-field (just like static heavy quark)
- By integrating out the z-field, the Wilson line is recovered.

$$
\int \mathcal{D} \bar{z} \mathcal{D} z e^{-\int_{x} \bar{z}\left(D_{z}+m\right) z} z(\delta z) \bar{z}(0)=\langle z(\delta z) \bar{z}(0)\rangle=U_{z}(\delta z, 0)
$$

- Additive mass renormalization δm
- z-field wave function renormalization Z_{z}

Renormalization

- Renormalization of non-local quark bilinear

$$
O_{\mathcal{C}}=Z_{\psi, z} e^{\delta m \ell(\mathcal{C})} O_{\mathcal{C}}^{\mathrm{ren}}
$$

- $Z_{\psi, z}: \psi$, z-field wave function, ψ-z-field vertex renormalization
- Renormalizability has been proven only up to two-loop (HQET).
- The existence of the continuum limit for the HQET has been confirmed in the lattice QCD simulations. (numerical NPT proof)

- Power divergence

- Power divergence makes the theory ill-defined.
(e.g. no continuum limit on lattice.)
- The power divergence must be subtracted nonperturbatively.
- Power divergence subtracted non-local operator:

$$
\widetilde{O}^{\text {subt }}(\delta z)=e^{-\delta m|\delta z|} \widetilde{O}(\delta z) \quad \stackrel{\lfloor }{\longleftrightarrow} \quad \underset{z}{ }|\longrightarrow|
$$

Subtracting power divergences

- Choice of δm [Musch et al. (2011)]
- One way is to use static $Q \bar{Q}$ potential $V(R)$.
- $V(R)$ is obtained from Wilson loop:

$$
W_{R \times T} \propto e^{-V(R) T} \quad(T \rightarrow \text { large })
$$

- Renormalization of $V(R)$:

$$
V^{\mathrm{ren}}(R)=V(R)+2 \delta m
$$

- Renormalization condition (fix a renormalized quantity) :

$$
V^{\mathrm{ren}}\left(R_{0}\right)=V_{0} \longrightarrow \delta m=\frac{1}{2}\left(V_{0}-V\left(R_{0}\right)\right)
$$

- Power divergence free quasi distributions

$$
\widetilde{q}^{\mathrm{subt}}\left(\tilde{x}, \mu, P_{z}\right)=\int \frac{d \delta z}{2 \pi} e^{-i \tilde{x} P_{z} \delta z} e^{-\delta m|\delta z|}\left\langle\mathcal{N}\left(P_{z}\right)\right| \widetilde{O}(\delta z)\left|\mathcal{N}\left(P_{z}\right)\right\rangle
$$

Subtracting power divergences

- Procedure in the simulation (nonperturbative)
(1) Measure Wilson loop to get the potential $V(R)$.
(2) Set a renormalization condition $V^{\mathrm{ren}}\left(R_{0}\right)=V_{0}$ to get $\quad \delta m=\frac{1}{2}\left(V_{0}-V\left(R_{0}\right)\right)$

(3) $V(R)$ contains linear divergence which share the one from nonlocal matrix element.

$$
\begin{aligned}
\text { potential } & V\left(R_{0}\right)=\left(\frac{2 c}{a}\right) v\left(R_{0}\right) \\
\text { matrix element } & F(\delta z)=e^{-\frac{\sigma}{a} \delta z} f(\delta z)
\end{aligned}
$$

(4) Subtract:

$$
e^{-\delta m \delta z} F(\delta z)=e^{-\frac{V_{0}-v\left(R_{0}\right)}{2} \delta z} f(\delta z)
$$

Subtracting power divergences

- Procedure in the matching (perturbative)
(1) Perturbatively calculate potential $V(R)$.
(2) Set a renormalization condition $V^{\text {ren }}\left(R_{0}\right)=V_{0}$ to get $\quad \delta m=\frac{1}{2}\left(V_{0}-V\left(R_{0}\right)\right)$

(3) $V(R)$ contains linear divergence which share the one from nonlocal matrix element.

$$
\begin{aligned}
& \text { potential } V\left(R_{0}\right)=-g^{2} C_{F} \frac{1}{4 \pi R_{0}}+\left(g^{2} C_{F} \int_{\boldsymbol{k}} \frac{1}{\boldsymbol{k}^{2}}\right)+O\left(g^{4}\right) \\
& \text { rix element } \left.F(\delta z)=\left(1-g^{2} C_{F} \frac{\delta z}{2} \int_{\boldsymbol{k}} \frac{1}{\boldsymbol{k}^{2}}\right)+\cdots\right) F^{\text {tree }}(\delta z) \\
& \text { btract order bv order. }
\end{aligned}
$$

(4) Subtract order by order:

$$
e^{-\delta m \delta z} F(\delta z)=e^{-\frac{V_{0}}{2} \delta z}(\text { no linear div }) \times F^{\text {tree }}(\delta z)
$$

Matching between continuum and lattice

- Matching for being precise

$$
O^{\mathrm{cont}}=Z O^{\mathrm{latt}}
$$

- necessary to absorb difference in renormalization.
- It can be calculable using perturbation.
- Momentum space v.s. Coordinate space

$$
\begin{aligned}
& {\left[\begin{array}{c}
\widetilde{q}^{\text {cont }}\left(\tilde{x}, \mu, P_{z}\right) \\
\mathcal{V}^{2} Z\left(\tilde{x}, P_{z}\right) \\
\widetilde{q}^{\text {latt }}\left(\tilde{x}, \mu, P_{z}\right)
\end{array}\right]}
\end{aligned}=\int \frac{d \delta z}{2 \pi} e^{-i \tilde{x} P_{z} \delta z} \underbrace{\begin{array}{c}
\text { matching } \\
\text { in momentum space }
\end{array}}_{\begin{array}{c}
\text { matching } \\
\text { in coordinate space } \\
\text { (This work) }
\end{array}}
$$

Matching between continuum and lattice

- Matching pattern

$$
\longmapsto\left|\delta_{z}\right| \longrightarrow 1
$$

\checkmark No convolution-type, no mixing between different length of δz
\checkmark No momentum dependent factor

$$
\widetilde{O}(\delta z)^{\mathrm{cont}}=Z(\delta z) \widetilde{O}(\delta z)^{\mathrm{latt}}
$$

- Dimensionality of UV cutoff

3d UV cutoff: $\perp=(t, x, y)$ natural in Euclidean space

2d UV cutoff: $\perp=(x, y)$ natural
in Minkowski space-time

Matching between continuum and lattice

- One-loop in continuum (3d UV cutoff)

vertex-type

sail-type

tadpole-type

$$
\begin{aligned}
\delta \Gamma_{0}(\delta z) & =\left.\frac{g^{2} C_{F}}{8 \pi^{2}}\left(\operatorname{Ei}\left(-k_{\perp z}\right)-\left(2+k_{\perp z}\right) e^{-k_{\perp z}}\right)\right|_{k_{\perp z}=\lambda|\delta z|} ^{\mu|\delta z|} \quad \xrightarrow[\delta z \rightarrow 0]{ } \frac{g^{2} C_{F}}{8 \pi^{2}} \ln \frac{\mu}{\lambda}, \\
\delta \Gamma_{1}(\delta z) & =\frac{g^{2} C_{F}}{4 \pi^{2}}\left(\ln \frac{\mu}{\lambda}+\left.\left(-\operatorname{Ei}\left(-k_{\perp z}\right)+e^{-k_{\perp z}}\right)\right|_{k_{\perp z}=\lambda|\delta z|} ^{\mu|\delta z|}\right) \xrightarrow[\delta z \rightarrow 0]{\longrightarrow} 0, \\
\delta \Gamma_{2}(\delta z) & =\frac{g^{2} C_{F}}{4 \pi^{2}}\left(\ln \frac{\mu}{\lambda}-\left.\operatorname{Ei}\left(-k_{\perp z}\right)\right|_{k_{\perp z}=\lambda|\delta z|} ^{\mu|\delta z|}\right)
\end{aligned} \xrightarrow[\delta z \rightarrow 0]{\longrightarrow} 0 . \quad l
$$

$\operatorname{Ei}(x)=-\int_{-x}^{\infty} d t \frac{e^{-t}}{t}:$ exponential integral

- Local case ($\delta z \rightarrow 0$) can be safely reproduced.
- Linear divergence is already subtracted.
- $\mathrm{UV}(\mu)$ and $\operatorname{IR}(\lambda)$ regulators are introduced in $\perp=(t, x, y)$ direction.

Matching between continuum and lattice

- One-loop in continuum (2d UV cutoff)

$$
\begin{aligned}
& \delta \Gamma_{0}(\delta z)=-\left.\frac{g^{2} C_{F}}{16 \pi^{2}} \int_{-\infty}^{\infty} d k_{0}\left(k_{\perp}+\frac{1}{\sqrt{k_{0}^{2}+1}}\right) e^{-\sqrt{k_{0}^{2}+1} k_{\perp}}\right|_{k_{\perp}=\lambda|\delta z|} ^{\mu|\delta z|} \underset{\delta z \rightarrow 0}{ } \frac{g^{2} C_{F}}{8 \pi^{2}} \ln \frac{\mu}{\lambda} \\
& \delta \Gamma_{1}(\delta z)=\frac{g^{2} C_{F}}{4 \pi^{2}}\left(\ln \frac{\mu}{\lambda}+\left.\frac{1}{2} \int_{-\infty}^{\infty} d k_{0} \frac{e^{-\sqrt{k_{0}^{2}+1} k_{\perp}}}{\sqrt{k_{0}^{2}+1}}\right|_{k_{\perp}=\lambda|\delta z|} ^{\mu|\delta z|}\right) \\
& \delta \Gamma_{2}(\delta z)=\frac{g^{2} C_{F}}{4 \pi^{2}}\left(\ln \frac{\mu}{\lambda}\right. \\
& \quad+\left.\frac{1}{2} \int_{-\infty}^{\infty} d k_{0}\left(\frac{e^{-\sqrt{k_{0}^{2}+1} k_{\perp}}}{\sqrt{k_{0}^{2}+1}}+k_{\perp} \operatorname{Ei}\left[-\sqrt{k_{0}^{2}+1} k_{\perp}\right]\right)\right|_{k_{\perp}=\lambda|\delta z|} ^{\mu|\delta z|} 0
\end{aligned}
$$

- Local case ($\delta z \rightarrow 0$) can be safely reproduced.
- Complex expressions, but similar behavior to 3D cutoff case.
- $\mathrm{UV}(\mu)$ and $\operatorname{IR}(\lambda)$ regulators are introduced in $\perp=(x, y)$ direction.

Matching between continuum and lattice
 - Similarity between 3d and 2d UV cutoff

2 dimensional cutoff

3 dimensional cutoff

$$
\begin{aligned}
G_{1}^{2 \operatorname{dim}}(|x|)=\frac{1}{2} \int_{-\infty}^{\infty} d k_{0}|x| e^{-\sqrt{k_{0}^{2}+1}|x|} & \Longleftrightarrow G_{1}^{3 \operatorname{dim}}(|x|)=(|x|+1) e^{-|x|} \\
G_{2}^{2 \operatorname{dim}}(|x|)=\frac{1}{2} \int_{-\infty}^{\infty} d k_{0} \frac{e^{-\sqrt{k_{0}^{2}+1}|x|}}{\sqrt{k_{0}^{2}+1}} & \Longleftrightarrow G_{2}^{3 \operatorname{dim}}(|x|)=e^{-|x|}-\operatorname{Ei}[-|x|] \\
G_{3}^{2 \operatorname{dim}}(|x|)=\frac{1}{2} \int_{-\infty}^{\infty} d k_{0}|x| \operatorname{Ei}\left[-\sqrt{k_{0}^{2}+1}|x|\right] & \Longleftrightarrow G_{3}^{3 \operatorname{dim}}(|x|)=-e^{-|x|}
\end{aligned}
$$

Matching between continuum and lattice
 - One-loop matching coefficients: an example

- Naive fermion is used.
- Link smearing (HYP1, HYP2)

$$
Z(\delta z)=1+\frac{g^{2}}{(4 \pi)^{2}} C_{F} c(\delta z)+O\left(g^{4}\right)
$$

Matching between continuum and lattice

- Effects of link smearing

- Large linear behavior is observed when it is not subtracted.
- HYP2 removes the mismatch in linear divergence between continuum and lattice in large part.

Summary and outlook

- New approach for lattice calculation of PDFs has been proposed:
- quasi-PDFs with LMET approach [Ji (2013)]
- lattice cross section with collinear factorization approach [Ma and Qiu (2014)]
- For precise calculation, there are several important steps:
- power divergence subtraction
- lattice-continuum matching (PT, NPT)
- continuum limit
- Global QCD analysis with lattice QCD could support EIC.
- Transverse momentum dependent parton densities (TMDs) and Generalized parton distributions (GPDs) could be also addressed by defining lattice calculable cross section toward full scan of 3D structure of nucleons.

