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Collinear factorization and PDFs

» Collinear factorization - a key concept in PQCD

DIS 2 _ Q_Z o ‘ AéCD
o ('CC)Q)\/E)_ z Coz Ly ,UQ’\/E &) O Q2

a:q7q_7g

z : Bjorken-x,  : momentum trapsfer, /s : collision energy
. - factorization scale

» Parton Distribution Functions (PDFs)

- Probability density for finding a particle with a certain
longitudinal momentum fraction x of proton.

- Absorb all perturbative collinear divergences.

- Non-perturbative.

- Universal. fb@ve power of QCD !
3 e o0




Global QCD analysis

» Extract PDFs from experiment data

|PDFs at Qo with |, change fit ,
"
initial fit params - \Ea?ms to minimize X X

fa (CE) QO) ! &
DIS (fixed target)
HERA ('94) 1
DY
W-asymmetry
Direct-y ]
Jets
3
@) |
] P
DGLAP ° fo g
evolution I
10[# L Ll ! N R A ! Ll I L1
100 107 102 10° 104
A 4 17X
PDFs at () > (g ﬁQCD calculation | cross section

foz(ajaQ) \?‘O‘(x’l’\/g) . O-(vaQ?\/g)
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Global QCD analysis with lattice QCD
» Extract PDFs from lattice

| PDFs at QQ with
initial fit params

fa(ajv QO)

"

DGLAP
evolution

v

PDFs at () > (g
fo(z, Q)

MQG fiit
\Egiams to minimize X

X
-
Lattice QCD
data b
6)

PT QCD cal

/ culation |
\goz (377 1, \/E) I

5

Ccross section

o(z,Q%,Vs)




PDFs from lattice

» Quark distribution by light-cone operator

() = [ G N(P)OEINP),

O(&7) =¢(E )y U+, 0)%(0)

- &F = (t42)/V2 : light-cone coordinate
- Time-dependent.= >Not calculable on the lattice directly.

» Moments

1
Ay = /0 drx" tq(z) = P ..1.Pun (N (P)|O1r1nd | AF(P))

— > >
Otpibny — w(o)fy{mi k2 ... Dun}w(o)
- Written in local operators. Calculable on Iattice (in principle).

- But, higher moments are difficult to be accessed.
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Quasi-PDFs Wi(2013)]

» Quasi distributions

-~ doz L= ~
i@ 1, P2) = [ S=e PN (P)|O(2) N (P.)),

—~~— —

O(0z) = ¥(02)7*U-(0z,0)1(0)

- Separated in spatial z-direction. Calculable on lattice.
- In the limit of P, — oo, normal distributions are recovered.

» Matching (Large Momentum Effective Theory)
_ d A Adcp M?
q<x,A,Pz>—/jz(z,Pz,;‘)q(y,mw( 7 PZQ)

- Z can be perturbatively obtained.

- Large P, is required for small corrections.
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QCD collinear factorization approach
[Ma and Qiu (2014)]

» Going back to the collinear factorization
2

A2
P2, Q% V) = Y Ca (w,ﬁz,ﬁ)wa(x,ﬁ)w( QCD)

2
a:qu_jg Q

All CO divergences are factorized into the PDFs with PT hard coefficients.

» Lattice calculable cross section

—~ ~2 A2
5z, 0% P) = ), Ca (x’ %’Pz> ® falz, p?) + O ( ggD)

a:qu7g M

All CO divergences are factorized into the PDFs with PT hard coefficients.

u <— W (factorization scale)

Q
Vs

< [ (resolution)
— P (parameter)
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Lattice quasi-PDFs, so far

» Two calculations in LMET approach

[Chen et al.,
NPB911(2016)246]

24% x 64, Ny = 2+ 1+ 1 HISQ
a ~ 0.12fm (1.6GeV), mps ~ 310MeV

- Exploratory study.

323 x 64, Ny =2 i 1+ 1 Twisted Mass
a ~ 0.082fm (2.4GeV), mpg ~ 370MeV

[Alexandrou et al.,

PRD92(2015)014502]
MSJZ‘{Z o P, = 6r/L
ABM11 - 5 ~ 1

- Two calculations look consistent with each other.
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Renormalization

» Renormalization of Wilson lines \/\
i
We = ZzeémE(C)WCren M
- Well-known. [Dotsenko, Vergeles, Arefeva, Craigie, Dorn, ... ('80)]

- om : mass renormalization of a test particle moving along C
All the power divergence is contained.

» Auxiliary z-field (just like static heavy quark)
- By integrating out the z-field, the Wilson line is recovered.
/ DEDze Je FD-AM= 4 (5.95(0) = (2(52)5(0)) = U. (62, 0)

- Additive mass renormalization om
- z-field wave function renormalization 7,
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Renormalization

» Renormalization of non-local quark bilinear

/
[
Op = &D Z€5m€(C)Oren //\/C,

- Zy..+ ¥, z-field wave function, v -z-field vertex renormalization
- Renormalizability has been proven only up to two-loop (HQET).

- The existence of the continuum limit for the HQET has been
confirmed in the lattice QCD simulations. (numerical NPT proof)

» Power divergence

- Power divergence makes the theory ill-defined.

(e.g. no continuum limit on lattice.)
- The power divergence must be subtracted nonperturbatively.
- Power divergence subtracted non-local operator:

6subt(5z) _ 6—5m|52|5(52) e— |82 —>!



Subtracting power divergences

» Choice of dm [Musch etal. (2011)]

- One way is to use static Q(Q potential V (R). I
- V(R) is obtained from Wilson loop: T
Waxr oc e VT (T 5 large) 1

- Renormalization of V(R) :
V*™(R) = V(R) + 20m
- Renormalization condition (fix a renormalized quantity) :

1
Vren(Ro) — V() — 0 = §(V0 — V(Ro))

< R —>

» Power divergence free quasi distributions

~su ~ doz —1T zZ _—0ml|oz A
(T, Py) = 5 € Peozo=0mO=lN(P,)|O(62) N (P.))



Subtracting power divergences

» Procedure in the simulation (nonperturbative)

(1) Measure Wilson loop to get the potential V (R) .

(2) Set a renormalization condition V***(Ry) = 1V, Ve

1
toget om = Q(Vo — V(Ry))

A VER)

(3) V(R) contains linear divergence which share the one from non-

local matrix element.

potential  V(Ry) =
matrix element  F'(0z) =

(4) Subtract:

e OMOFE(§2) = e - Z f(52)
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Subtracting power divergences

» Procedure in the matching (perturbative)
(1) Perturbatively calculate potential V' (R) .

(2) Set a renormalization condition V™" (Ry) =

1
toget om = §(Vo — V(Ry))

(3) V(R) contains linear divergence which share the one from non-
local matrix element.

1 ‘ * *'
ootential V (Ro) g°C F iR ‘ (9")
matrix element F(5z) — @ D Ftree (52)

(4) Subtract order by order:

e O (§z) = e~ 207 (no linear div) x F'°°(6z)
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Matching between continuum and lattice

» Matching for being precise
Ocont _ ZOla,tt

- necessary to absorb difference in renormalization.
- It can be calculable using perturbation.

» Momentum space v.s. Coordinate space

~cont /[ ~ doz —1iT 2 A con
@ P)l= | e POAN(P.)]|O(82) N (P, )
@ Z(%, P,) @ Z(0z)
2 B d5Z T P ~ a
¢ (%, p, P)|= 5 € PAN(P)|002) IV (P2))™ |
matching matching
IN momentum space In coordinate space

(This work)



Matching between continuum and lattice
» Matching pattern

e |82| —>l
G ———————

v No convolution-type, no mixing between different length of 0z
v No momentum dependent factor

O(52)°™ = Z(52)0(6z)'2H

» Dimensionality of UV cutoff

a X L

4

3d UV cutoff: L= (t,z,y) 2d UV cutoff: L= (x,y)

natural natural
In Euclidean space In Minkowski space-time




Matching between continuum and lattice
» One-loop in continuum (3d UV cutoff)

Lo PR e

vertex-type salil-type tadpole-type
(6 = LOF (ki) - ket [0 £y
61 (0z) = g;gF (111% + (—Ei(—k1.) +e ") :fj‘:)\wzl) — 0,
§T5(82) = gifj (m% - (k)L ) —— 0.

o0 —t
. 6 L} |
Ei(z) = —/ di—- : exponential integral

- Local case ( 4z — 0) can be safely reproduced.
- Linear divergence is already subtracted.
- UV( M) and IR(\) regulators are introduced in L= (¢, z,y) direction.
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Matching between continuum and lattice
» One-loop in continuum (2d UV cutoff)

pldz|

2 o0 2
_ 9 Cr 1 —\/k2+1E 9 Cr.,
oTol0z) = —T5 /_ Ao (lﬂ " k2 + 1) cv oo srz My
o0 ki=M\6z|
ploz|
2 o0 —\/k2—|—1k
_ 9Cr ] R —
oTloz) = T (hﬂA T3 /_oo Ao BT |,y ) 0
1L=A|0%
2C
o0y(52) = L5 (%

1 o0 6—\/kg—|—1kJ_ ;
— dk ki1El|—\/k 1k
‘|‘2/_OO 0 /—kg—l—l + K EA [ 0+ J_:|

pldz|
) — 0.

k'J_:>\|5Z|

- Local case ( 6z — 0) can be safely reproduced.
- Complex expressions, but similar behavior to 3D cutoff case.
- UV( 1) and IR(\) regulators are introduced in L= (x, y) direction.
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Matching between continuum and lattice
» Similarity between 3d and 2d UV cutoff

2 dimensional cutoff 3 dimensional cutoff
. 1 > _ T im —|x
G1M™ (|z]) = 5/ dlo|z|e~VEat1le] = G (|z)) = (Jz| + 1)e 1!

1 o0 6—\/k8+1|$|
— dk
2) o R+ 1

Gidlm(|x|)=§/ dko|:v|Ei[— k8+1|a:|] —  G3m(|z]) = —e7Iol

G (|]) = = G(jz]) = e —Ei[—|z]]




Matching between continuum and lattice
» One-loop matching coefficients: an example

- Naive fermion is used. 2062 =1+ & Cre(62) + O(gH
47r)2
_ Link smearing (HYP1, HYP2) 4m)

S N W s O
SO N W~ O
S N W s O

or 1 of 1 0
c(dz) -10t 1 -10f 1410
20 T 20T 20
10_| ' ! ! 1 1O_|""|""|""|""|_ 10

OH O 3d cut

| % 2d cut| #* ] ORISR KRR IRIIIIK I ]

-10 %?5 7 -10‘Q3dcut 7] '10‘03dcut ]

00 RS ismepeel o [l x 20 cu total 1 Il % 2dcu total |

-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
0z 0z 0z
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Matching between continuum and lattice

» Effects of link smearing

unsmear HYP1 HYP2
linear div contained linear div contained linear div contained
%"""""""""'é O O
150 $$ O 3d cut $$ s : - -

% | % og & 20 O 3d cut o0 | O 3d cut i '
100 B cut] & - | % 2d cut _ _ ¥ 2d cut _
50__ $$$ $$$ 1 10F - 10%W 5F2
i % B | ! ] ) ]

- Large linear behavior is observed when it is not subtracted.

- HYP2 removes the mismatch in linear divergence between
continuum and lattice in large part.

21



Summary and outlook

New approach for lattice calculation of PDFs has been proposed:
- quasi-PDFs with LMET approach [Ji (2013)]

- lattice cross section with collinear factorization approach
[Ma and Qiu (2014)]

For precise calculation, there are several important steps:
- power divergence subtraction
- lattice-continuum matching (PT, NPT)

- continuum limit
Global QCD analysis with lattice QCD could support EIC.

Transverse momentum dependent parton densities (TMDs) and
Generalized parton distributions (GPDs) could be also addressed
by defining lattice calculable cross section toward full scan of 3D
structure of nucleons.
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