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‣ Collinear factorization - a key concept in PQCD 

‣ Parton Distribution Functions (PDFs)

- Probability density for finding a particle with a certain 
longitudinal momentum fraction x of proton. 
- Absorb all perturbative collinear divergences. 
- Non-perturbative. 
- Universal.
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Collinear factorization and PDFs
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‣ Extract PDFs from experiment data
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‣ Extract PDFs from lattice
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‣ Quark distribution by light-cone operator 

‣ Moments

- Written in local operators. Calculable on lattice (in principle). 
- But, higher moments are difficult to be accessed.

-                              : light-cone coordinate 
- Time-dependent.        Not calculable on the lattice directly.

PDFs from lattice

q(x, µ) =

Z
d⇠�

2⇡
e�ixP

+
⇠

�
hN (P )|O(⇠�)|N (P )i,

O(⇠�) =  (⇠�)�+U+(⇠
�, 0) (0)

⇠± = (t± z)/
p
2

an =

Z 1

0
dxxn�1q(x) =

1

Pµ1 · · ·Pµn
hN (P )|O{µ1···µn}|N (P )i

O{µ1···µn} =  (0)�{µ1i
 !
D µ2 · · · i !D µn} (0)

6



‣ Quasi distributions 

‣ Matching (Large Momentum Effective Theory)

-      can be perturbatively obtained. 
- Large       is required for small corrections. 

- Separated in spatial z-direction. Calculable on lattice. 
- In the limit of                , normal distributions are recovered.

Quasi-PDFs
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‣ Going back to the collinear factorization 

‣ Lattice calculable cross section

QCD collinear factorization approach
[Ma and Qiu (2014)]
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‣ Two calculations in LMET approach
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Lattice quasi-PDFs, so far

[Chen et al., 
NPB911(2016)246]

[Alexandrou et al.,  
PRD92(2015)014502]
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Figure 6: Results from an hypothetical mixed momentum analysis using different values of
the momentum in the computation of the lattice matrix element (left: P3 = 4π/L,
right: P3 = 6π/L) than in the Fourier transformation, matching and mass correc-
tions (P3 = 8π/L) with 5 steps of HYP smearing.

Nevertheless, the agreement with the phenomenological parametrizations of the distri-
butions at the intermediate and large x regions is really encouraging. This indicates
that by employing an only moderately larger value of P3 than the ones used here, we
could obtain even a quantitative agreement to the parametrizations in certain regions
of x. This concerns in particular the large x region, where increasing values of P3 tend
to bring the resulting distribution down. In the small (and positive) x region, on the
other hand, it seems that increasing the nucleon momentum is not sufficient to produce
a rise of the distribution. This may be related to the fact that there is a limitation in
the present calculation in the small x region due to the presence of the infrared, 1/L,
and ultra-violet, 1/a cut-off regulators on a finite lattice. Thus, this limitation will be
overcome when larger lattices and smaller values of the lattice spacing become avail-
able. Furthermore, we stress that the here obtained results are at only one, non-physical
value of the pion mass and the shape of distribution might as well depend on the quark
mass. In any case, a more definite statement can only be made after we have access
to the matrix elements for P3 = 8π/L. This is not possible with our present statistics.
However, we are in the process of generating a substantially higher statistics. This will
allow us to extrapolate the data for P3 = 2π/L, P3 = 4π/L and P3 = 6π/L to obtain
the quasidistribution at P3 = 8π/L. Although we do not expect a big difference to the
situation of the hypothetical mixed setup shown in Fig. 6, a full analysis with real data
is, of course, mandatory and will be presented in a forthcoming work.

5 Conclusions and outlook

In this work, we have presented our first exploratory study of the approach developed
in Ref. [5] for the calculation of the x dependence of quark distributions directly on the
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- Exploratory study. 
- Two calculations look consistent with each other.
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FIG. 4: The nucleon isovector quasi-PDF (green), with one-loop correction (red), and with after one-loop and mass correction
(i.e. qII). (blue) for the quark density (left), helicity (middle) and transversity (right) as functions of x for the higher two
boosted momenta Pz = 2 (top row) and 3 (bottom row) in units of 2⇡/L.

FIG. 5: The momentum-dependence of the nucleon isovector distributions after one-loop and mass correction (i.e. qII) for quark
density (left), helicity (middle) and transversity (right) as functions of x. The orange band shows the momentum extrapolation
using the higher two momenta.

This change shifts the central value of the unpolarized and longitudinally polarized up-down quark asymmetry and
increases the estimated errors. However, the results remain consistent within the given errors.

To further reduce the remaining O(⇤2

QCD

/P 2

z

) correction due to higher-twist operators, we extrapolate to infinite
momentum using the form a + b/P 2

z

at each x point. The resulting distribution, shown in Fig. 5, has |x| > 1 region
within 2 sigma of zero; thus, we recover the correct support for the physical distribution within error. Note that the
smallest reliable region of x is related to the largest momentum on available on the lattice O(1/a), which is roughly
the inverse of length of the lattice volume in the link direction; therefore, we expect large systematic uncertainty in
the region x 2 [�0.08, 0.08]. In the case of quark density, there are also indications of momentum convergence within
2 sigma from P

z

= 2 and 3 data. In addition, the final extrapolated distribution (orange band) is consistent with the
largest momentum distribution. However, for the polarized distributions, even larger P

z

calculations are needed to
improve the convergence rate and reduce the uncertainty due to extrapolation, especially for the helicity.

There are many aspects that need to be improved to get the systematics under control, as indicated at various
points in the earlier sections. The operator renormalization also needs to be determined to one-loop level or better
in the future calculations. We intend in this work mainly to demonstrate that one can achieve light-cone quantities
with reasonable accuracy using currently available computational resources, and it opens the door for many more
lattice-QCD calculations on parton physics.
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⇠ 1.4GeV
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⇠ 1.3GeV

243 ⇥ 64, Nf = 2 + 1 + 1 HISQ

a ⇠ 0.12fm (1.6GeV),mPS ⇠ 310MeV

323 ⇥ 64, Nf = 2 + 1 + 1 Twisted Mass

a ⇠ 0.082fm (2.4GeV),mPS ⇠ 370MeV



‣ Renormalization of Wilson lines 

‣ Auxiliary z-field (just like static heavy quark)

Renormalization

- Well-known.  
-       : mass renormalization of a test particle moving along 

[Dotsenko, Vergeles, Arefeva, Craigie, Dorn, … (’80)]

�m C
All the power divergence is contained.
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- By integrating out the z-field, the Wilson line is recovered. 

- Additive mass renormalization 
- z-field wave function renormalization
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‣ Renormalization of non-local quark bilinear 

‣ Power divergence

Renormalization

-          :      , z-field wave function,      -z-field vertex renormalization 
-  Renormalizability has been proven only up to two-loop (HQET). 
- The existence of the continuum limit for the HQET has been 
confirmed in the lattice QCD simulations. (numerical NPT proof)
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C
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- Power divergence makes the theory ill-defined.                     
       (e.g. no continuum limit on lattice.) 
- The power divergence must be subtracted nonperturbatively. 
- Power divergence subtracted non-local operator:

eOsubt(�z) = e��m|�z| eO(�z)



‣ Choice of  

‣ Power divergence free quasi distributions

Subtracting power divergences

- One way is to use static         potential          . 

-           is obtained from Wilson loop:  

- Renormalization of           : 

- Renormalization condition (fix a renormalized quantity) :

�m
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[Musch et al. (2011)]
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‣ Procedure in the simulation (nonperturbative)
(1)  Measure Wilson loop to get the potential           .  

(2)  Set a renormalization condition  

(3)           contains linear divergence which share the one from non-
local matrix element. 

(4)  Subtract:

Subtracting power divergences

V (R)
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‣ Procedure in the matching (perturbative)
(1)  Perturbatively calculate potential           .  

(2)  Set a renormalization condition  

(3)           contains linear divergence which share the one from non-
local matrix element. 

(4)  Subtract order by order:

Subtracting power divergences

V (R)
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‣ Matching for being precise 

‣ Momentum space v.s. Coordinate space

Matching between continuum and lattice

- necessary to absorb difference in renormalization. 
- It can be calculable using perturbation.
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‣ Matching pattern 

‣ Dimensionality of UV cutoff

Matching between continuum and lattice

✓ No convolution-type, no mixing between different length of  
✓ No momentum dependent factor

eO(�z)cont = Z(�z) eO(�z)latt

µ µ

3d UV cutoff: 2d UV cutoff:?= (t, x, y) ?= (x, y)

natural 
in Euclidean space

natural 
in Minkowski space-time

�z
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‣ One-loop in continuum (3d UV cutoff)

- Local case (            ) can be safely reproduced. 
- Linear divergence is already subtracted. 
- UV(    ) and IR(   ) regulators are introduced in                   direction.

Matching between continuum and lattice
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‣ One-loop in continuum (2d UV cutoff)

- Local case (            ) can be safely reproduced. 
- Complex expressions, but similar behavior to 3D cutoff case. 
- UV(    ) and IR(   ) regulators are introduced in                   direction.

Matching between continuum and lattice
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‣ Similarity between 3d and 2d UV cutoff
Matching between continuum and lattice
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‣ One-loop matching coefficients: an example
- Naive fermion is used. 
- Link smearing (HYP1, HYP2)

Matching between continuum and lattice
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‣ Effects of link smearing

- Large linear behavior is observed when it is not subtracted. 
- HYP2 removes the mismatch in linear divergence between 
continuum and lattice in large part.

Matching between continuum and lattice
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‣ New approach for lattice calculation of PDFs has been proposed: 

- quasi-PDFs with LMET approach 

- lattice cross section with collinear factorization approach 

‣ For precise calculation, there are several important steps: 

- power divergence subtraction 

- lattice-continuum matching (PT, NPT) 

- continuum limit 

‣ Global QCD analysis with lattice QCD could support EIC. 

‣ Transverse momentum dependent parton densities (TMDs) and 
Generalized parton distributions (GPDs) could be also addressed 
by defining lattice calculable cross section toward full scan of 3D 
structure of nucleons.
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Summary and outlook

[Ji (2013)]

[Ma and Qiu (2014)]


