Form factors for moments of correlation functions

Chia Cheng Chang
Lawrence Berkeley National Lab
in collaboration with
Chris Bouchard (W\&M)
Kostas Orginos (W\&M/JLab)
David Richards (JLab)
22nd International Spin Symposium University of Illinois and Indiana University

motivation

constrain shapes of form factors in nuclear and particle physics
calculate slopes of form factors w.r.t. momenta

$v-N$ quasi-elastic scattering

Llwewllyn-Smit formalism

$$
\frac{d \sigma}{d Q^{2}}\binom{\nu n \rightarrow \ell^{-} p}{\bar{\nu} p \rightarrow \ell^{+} n}=\frac{M_{N}^{2} G_{F}^{2}\left|V_{u d}\right|^{2}}{8 \pi E_{\nu}^{2}}
$$

$$
\times\left[A\left(Q^{2}\right) \mp B\left(Q^{2}\right) \frac{s-u}{M_{N}^{2}}+\frac{C\left(Q^{2}\right)(s-u)^{2}}{M_{N}^{4}}\right]
$$

$$
\begin{aligned}
& \sim F_{1}\left(Q^{2}\right), F_{2}\left(Q^{2}\right), F_{A}\left(Q^{2}\right) \\
& F_{A}\left(Q^{2}\right)=g_{A}\left(1+\frac{Q^{2}}{M_{A}^{2}}\right)^{-2}
\end{aligned}
$$

$\sim 1 \%$ uncertainty for g_{A} before isospin \& EM effects dominate

proton charge radius

Gordon decomposition of vector current

$$
\begin{aligned}
\langle 0| V_{4}\left|q_{3}\right\rangle & =\bar{u}(0)\left(\gamma_{4} F_{1}\left(Q^{2}\right)+\frac{i}{2 M_{N}} \sigma_{43} q^{3} F_{1}\left(Q^{2}\right)\right) u\left(q_{3}\right) \\
& =2 E_{N} F_{1}\left(Q^{2}\right)
\end{aligned}
$$

calculate slope of F_{1} on the lattice
$\left.\frac{\partial G_{E}\left(Q^{2}\right)}{\partial Q^{2}}\right|_{Q^{2}=0}=-\frac{1}{6}\left\langle r^{2}\right\rangle=\left.\frac{\partial F_{1}\left(Q^{2}\right)}{\partial Q^{2}}\right|_{Q^{2}=0}-\frac{F_{2}(0)}{4 M_{N}^{2}}$
7σ experimental e vs. μ discrepancy
$\sim 2 \%$ uncertainty can discriminate 4% exp. difference
lattice can provide model independent values for radii

lattice overview

$\langle\Omega| A|\Omega\rangle=\frac{\int[d U] A[u] e^{-S_{U}+\ln \operatorname{det}(\not D+m)}}{\int[d U] e^{-S_{U}+\ln \operatorname{det}(\not D+m)}} \quad \begin{aligned} & \text { path integral } \\ & \text { for composite } \\ & \text { operator } A\end{aligned}$
Reduce weighted average to simple average
$U \sim e^{-S_{U}+\ln \operatorname{det}(\mathbb{D}+m)} \quad$ importance sampling
$\langle\Omega| A|\Omega\rangle \simeq \frac{1}{N} \sum_{n=1}^{N} A\left(U_{n}\right) \quad$ simple average

Gauge field configurations reusable for different projects

overview of moment methods

Issues with moment methods:
Wilcox - Moments on lattice yields wrong ground state.
[0204024v1]
Existing methods:
Isgur-Wise slope - position space method
[9410013]
HVP - time moment current current correlator [1403.1778v2]
Rome - expand lattice operators
ETMC - position space method
[1208.5914v2][1407.4059]
[1605.07327v1]
Most existing methods take $\partial / \partial q_{j}$ derivatives all at $q^{2}=0$ Our method takes $\partial / \partial q^{2}$ generalized to all momenta

ensemble overview

$2+1$ flavor JLab isotropic Clover $a \approx 0.12 \mathrm{fm}$
$m_{\pi} \approx 400 \mathrm{MeV}$
$N_{x}^{3} \times N_{t}=24^{3} \times 64$

correlator overview

double z-direction: $\quad N_{s}^{2} \times N_{z} \times N_{t}=24^{2} \times 48 \times 64$ 480 configurations $\times 16$ sources
$m_{\text {valence }}=m_{\text {light } \text { sea }}$

kinematic setup

For charge radius $A=B=N^{a}$ the nucleon interp. operator

correlators

two-point correlator

$$
C_{2 \mathrm{pt}}(t)=\sum_{\vec{x}}\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle e^{-i k x_{z}}
$$

two-point moment

$$
\begin{aligned}
C_{2 \mathrm{pt}}^{\prime}(t) & =\sum_{\vec{x}} \frac{-x_{z}}{2 k} \sin \left(k x_{z}\right)\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle \\
\lim _{k^{2} \rightarrow 0} C_{2 \mathrm{pt}}^{\prime}(t) & =\sum_{\vec{x}} \frac{-x_{z}^{2}}{2}\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle
\end{aligned}
$$

only have even spatial moments

two-point z-correlator

$\ln \left[C_{2 \mathrm{pt}}\left(t, x_{z}\right)\right]$

$M_{\text {eff }}$

integral of any polynomial moment converges in infinite volume

correlators cont.

three-point correlator

$$
C_{3 \mathrm{pt}}\left(t, t^{\prime}\right)=\sum_{\vec{x}, \vec{x}^{\prime}}\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle e^{-i k x_{z}^{\prime}}
$$

three-point moment

$$
\begin{aligned}
C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right) & =\sum_{\vec{x}, \vec{x}^{\prime}} \frac{-x_{z}^{\prime}}{2 k} \sin \left(k x_{z}^{\prime}\right)\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle \\
\lim _{k^{2} \rightarrow 0} C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right) & =\sum_{\vec{x}, \vec{x}^{\prime}} \frac{-x_{z}^{\prime 2}}{2}\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle
\end{aligned}
$$

moments are with respect to current insertion
given correlators, moments are computationally free

three-point z-correlator

lowest lying state when current is outside nucleon operators

finite volume correction

Spatial moments push the peak of the correlator away from origin

Larger finite volume corrections compared to regular correlators

Have exponential finite volume corrections

Currently thinking about ways to implement FV corrections

fit functions

two-point fit function
$C_{2 \mathrm{pt}}(t)=\sum_{m} \frac{Z_{m}^{b \dagger}\left(k^{2}\right) Z_{m}^{b}\left(k^{2}\right)}{2 E_{m}\left(k^{2}\right)} e^{-E_{m}\left(k^{2}\right) t}$
two-point moment fit function
$C_{2 \mathrm{pt}}^{\prime}(t)=\sum_{m} C_{m}^{2 \mathrm{pt}}(t)\left(\frac{2 Z_{m}^{b \prime}}{Z_{m}^{b}}-\frac{1}{2\left[E_{m}\left(k^{2}\right)\right]^{2}}-\frac{t}{2 E_{m}\left(k^{2}\right)}\right)$
definitions
$Z_{m}^{b}\left(k^{2}\right) \equiv\left\langle m, p_{i}=(0,0, k)\right| \bar{N}^{b}|\Omega\rangle$
$E_{m}\left(k^{2}\right)=\sqrt{M_{m}^{2}+k^{2}}$
$Z_{m}^{b \prime}=0$ for point source/sink two-point constrains all parameters except $Z_{m}^{b \prime}$

fit functions cont.

three-point fit function

$$
C_{3 \mathrm{pt}}\left(t, t^{\prime}\right)=\sum_{n, m} \frac{Z_{n}^{a \dagger}(0) \Gamma_{n m}\left(k^{2}\right) Z_{m}^{b}\left(k^{2}\right)}{4 M_{n} E_{m}\left(k^{2}\right)} e^{-M_{n}\left(t-t^{\prime}\right)} e^{-E_{m}\left(k^{2}\right) t^{\prime}}
$$

three-point moment fit function
$C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right)=\sum_{n, m} C_{n m}^{3 \mathrm{pt}}\left(t, t^{\prime}\right)\left\{\frac{\Gamma_{n m}^{\prime}}{\Gamma_{n m}}+\frac{Z_{m}^{b \prime}}{Z_{m}^{b}}-\frac{1}{2 E_{m}^{2}}-\frac{t^{\prime}}{2 E_{m}}\right\}$
2pt and 3pt constraints all params. except slopes 2pt moment needed for smeared source/sink 3pt moment constrains slope of form factor

preliminary

slopes of overlap factors

preliminary

slopes of gV

summary and outlook

requires negligible additional computation time obtain slopes of matrix elements increase precision of central values
more statistics
try on larger ensemble
implement FV corrections
correlators of higher moments
thank you

backup slides

spatial dependence of correlators

 Heisenberg picture in continuum infinite volume$$
C_{2 \mathrm{pt}}^{\prime}(x)=2 \sum_{n} \int_{0}^{\infty} d \vec{x} \frac{-x_{z}}{2 k} \sin \left(k x_{z}\right) \frac{Z_{n}^{b \dagger} Z_{n}^{b}}{2 E_{n}} e^{-E_{n} x_{z}} e^{-E_{n} t}
$$

lowest lying state is nucleon ground state

$$
\begin{aligned}
C_{3 \mathrm{pt}}^{\prime}\left(x, x^{\prime}\right)= & \sum_{n, m} \frac{4 G_{n m}}{E_{n}} \int_{0}^{\infty} d x_{z}^{\prime} \frac{-x_{z}^{\prime}}{2 k} \sin \left(k x_{z}^{\prime}\right) e^{-E_{m} x_{z}^{\prime}} \\
& -\sum_{n, r} \frac{4 H_{n} r}{E_{n}-E_{r}^{\Gamma}} \int_{0}^{\infty} d x_{z}^{\prime} \frac{-x_{z}^{\prime}}{2 k}\left(e^{-E_{n} x_{z}^{\prime}}-e^{-E_{r}^{\Gamma} x_{z}^{\prime}}\right)
\end{aligned}
$$

lowest lying state is a vector meson $E_{0}^{\Gamma}<E_{0}^{(\text {nucleon) }}$
both correlators are local therefore converge in IV limit

