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The Strong Force

Quantum Chromodynamics

• LQCD = ψ̄(i6D −m)ψ − 1

4
GµνG

µν

• The degrees of freedom are the QCD quark
and gluon fields, not the constituent
quarks!

• The QCD coupling constant αs is a
function of Q2.

• Asymptotic freedom → 2004 Nobel prize
(Gross,Wilczek,Politzer)

• Many successful predictions from pQCD at
high energies.

QCD is believed to be the correct theory of the strong force.
QCD should be able to describe the structure of the proton and neutron.
However, perturbative techniques cannot describe the complex bound state of
quark and gluon fields composing the proton.
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What does the nucleon look like?

size

Q2

N

π

Use our understanding of pQCD at high Q2 to begin to test our
understanding at lower Q2 → Operator Product Expansion
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Deep Inelastic Scattering

σ0 =
4α2E′2

q4

[
2

M
F1 sin2(θ/2) +

1

ν
F2 cos2(θ/2)

]

2σ0A‖ = −4α2

Q2

E′

E

[
E + E′ cos θ

Mν
g1 −

Q2

Mν2
g2

]

2σ0A⊥ = − 4α2

MQ2

E′2

E
sin θ cosφ

[
1

Mν
g1 +

2E

Mν2
g2

]

Structure Functions

F1(x,Q
2) =

1

2

∑
i

e2i qi(x,Q
2)

F2(x,Q
2) = 2xF1(x,Q

2)

g1(x,Q
2) =

1

2

∑
i

e2i ∆qi(x,Q
2)

g2(x,Q
2) = ?

Asymmetries

A‖ =
σ⇑↓ − σ⇑↑

σ⇑↓ + σ⇑↑

A⊥ =
σ⇐↓ − σ⇐↑

σ⇐↓ + σ⇐↑

x = Q2/(2Mν)

ν = E − E′

W 2
X = M2 + 2Mν −Q2

Q2 = −q2 = 4EE′ sin2(θ/2)

q

P

k

X

k′ Why is a transversely
polarized target needed?

A‖ ∝ g1 −
2Mx

ν
g2

→ g2 suppressed by 1/ν

A⊥ ∝ g1 + g2

→ In DIS region both
contribute.

⇒ A⊥ directly sensitive to non-perturbative effects!
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The dynamical twist-3 matrix element: d2

∫ 1

0
dxxn−1{g1 +

n

n− 1
g2} =

1

2
dn−1E

n
2 (Q2, g)

For n = 3 ∫ 1

0
x2{2g1 + 3g2}dx = d2

Interpretations of d2

• Color Polarizabilities (X.Ji 95, E.
Stein et al. 95)

• Average Color Lorentz force
(M.Burkardt)
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M. Burkardt Phys.Rev.D 88,114502 (2013)and Nucl.Phys.A735,185(2004).

d2 =
1

2MP+2Sx
〈P, S | q̄(0)gG+y(0)γ+q(0) | P, S〉

but with ~v = −cẑ
√

2G+y = −Ey +Bx = −( ~E + ~v × ~B)y

d2 ⇒ average color Lorentz force acting on quark moving backwards (since we are
in inf. mom. frame) the instant after being struck by the virtual photon.
〈F y〉 = −2M2d2
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Quark-gluon Correlations

g2(x,Q
2) = gWW

2 (x,Q2) + ḡ2(x,Q
2)

Twist-2 (Wandzura, Wilczek, 1977)

gWW
2 (x,Q2) = −gLT1 (x,Q2) +

∫ 1

x
gLT1 (y,Q2)dy/y

≡ gtw22 (x,Q2)

Twist-3 (Cortes, Pire, Ralston, 1992)

ḡ2(x,Q
2) = −

∫ 1

x

∂

∂y

(mq

M
hT (y,Q2) + ξ(y,Q2)

) dy
y

≡ gtw32 (x,Q2)
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As Q2 decreases,
when do higher twists begin to
matter?
When is the color force non-zero?
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Predictions and previous measurements of d2

dCN2 =
∫ 1
0 x

2(2g1 + 3g2)dx dNacht2 =
∫ 1
0 ξ

2
[
2 ξxg1 + 3

(
1− ξ2M2

2Q2

)
g2
]
dx

)2 (GeV2Q

1 2 3 4 5 6 7 8 9 10
0.03−

0.02−

0.01−

0

0.01

0.02

0.03

0.04 Lattice - Gockeler, et.al.

SLAC E155x+E155+E143

RSS Nachtmann

elastic Nachtmann

MIT Bag

CM Bag

Chiral Soliton

Sum Rules

]2/c2[GeV2Q
1 2 3 4 5

n 2d

-0.04

-0.03

-0.02

-0.01

0

0.01
E01-012 (Resonance)
E155x
E99-117 + E155x (combined)

Lattice QCD
Sum Rules
Chiral Soliton
Bag Models
RSS (Resonance)
Elastic Contribution (CN)

Lattice QCD
• Ab initio calculations can be done on the lattice

• Existing d2 lattice results in the quenched approximation (PRD.63.074506)
• Proton results agree with SLAC but neutron results do not.
• Updated and improved lattice results long overdue
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Physics with g2

• Polarized DIS is uniquely poised to provide insight into quark-gluon correlations.

• Direct access to higher twist using transversely polarized target.
• Twist-3 matrix element dp2 proprotional to an average Lorentz color force.
• Ab initio QCD calculations from the lattice are tested
• ḡ2 and d2 connected to quark OAM
• JLab provides best opportunity to explore valence region
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• ḡ2 and d2 connected to quark OAM
• JLab provides best opportunity to explore valence region

September 2016 7 / 18



Physics with g2

• Polarized DIS is uniquely poised to provide insight into quark-gluon correlations.
• Direct access to higher twist using transversely polarized target.
• Twist-3 matrix element dp2 proprotional to an average Lorentz color force.
• Ab initio QCD calculations from the lattice are tested
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Complementary Jlab Experiments

Hall C

Hall A

Hall A → neutron

E06-014 : dn2

Hall C → proton

E07-003 : SANE

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2
 (

G
eV

/c
)

2
Q

1

2

3

4

5

6

Similar kinematic coverage
Both used 4.7 GeV and 5.9 GeV beams
Both measured A‖ and A⊥

Both required new gas
Cherenkov counters
with existing detectors
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E06-014 : The dn2 Experiment
Spokespeople

B. Sawatzky, S. Choi, X. Jiang, and Z.-E. Meziani
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E06-014 : The dn2 Experiment

• Polarized 3He target

• BigBite spectrometer
• HRS data taken as well.
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E07-003 : Spin Asymmetries of the Nucleon Experiment
Spokespeople

S. Choi, M. Jones, Z.-E. Meziani, O.A. Rondon
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E07-003 : Spin Asymmetries of the Nucleon Experiment
SANE
• Polarized Ammonia Target

• Big Electron Telescope Array
• HMS data taken as well for resonance spin structure (Hoyoung Kang) and GE/GM

(Anusha Liyanage)

0%

20%

40%

60%

80%

100%

 72100  72200  72300  72400  72500  72600  72700  72800  72900  73000  73100

A
bs

ol
ut

e 
P

ol
ar

iz
at

io
n

Run Number

Preliminary Absolute Target Polarization for All SANE Runs

Positive Polarization
Negative Polarization

• 5.1 T magnetic field• Ammonia beads held
by a cup, placed in
LHe• Average polarization
was about 69%
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• Polarized Ammonia Target
• Big Electron Telescope Array

• HMS data taken as well for resonance spin structure (Hoyoung Kang) and GE/GM
(Anusha Liyanage)
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SANE results for x2gp1 and x2gp2
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dn2 results for x2g
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Valence domain: high x
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Jlab at 12 GeV
SHMS in Hall C

SHMS will be able to go to small angles (5.5◦)

• JLab 12GeV neutron experiments (Hall C and Hall A) will extend to higher Q2 with more
uniform coverage.

• A dedicated experiment with transversely polarized proton target is worthwhile effort at 12 GeV.
• Proposal to match the expected neutron precision, possible options: Hall C, SOLID, CLAS12
• High x and high Q2 data on g1 and g2 is needed to cleanly extract the leading twist PDFs → At

present many fits use data down to Q2 = 1GeV2!
• While a future EIC will mainly focus on the sea quarks and gluons, JLab will continue to present

a unique opportunity for studying QCD and the structure of the nucleon to high precision in the
valence region.
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Conclusion

• SANE and dn2 results significantly improve world data on gp2 and gn2

• dp2 result seems to indicated a negative or zero value around
Q2 ∼ 3− 6 GeV2 at the one standard deviation level, consistent with the
neutron result.

• Precision g2 measurements are important for future unraveling PDFs,
TMDs, and GPDs.
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