JLab Tritium Target Physics Program Overview

<u>Using A=3 Mirror Nuclei to Probe the Nucleon Structure</u>

Buddhini Waidyawansa (Argonne National Lab)

22nd International Spin Symposium September 27th, 2016

Why Mirror Nuclei?

In the absence of Coulomb interactions between the protons, a perfectly charge-symmetric and charge-independent nuclear force would result in the binding energies of all the mirror nuclei being identical

- They are structurally identical.

Studying differences in their properties reveals information about protons and neutrons structure

Why A=3 Mirror Nuclei?

- Lightest and the simplest mirror system
 - Proton in 3H = Neutron in 3He
- Differences in the nuclear effects are small
 - Binding energy
 - EMC effect
- Nuclear effects cancel in the cross-section ratios
 - FSI contributions
 - Radiative effects
 - Cleaner measurements

What we plan to measure @ JLab

Reaction	Cmpare 3He vs 3H	Measure	Jlab Experiment	
DIS e scattering	n+2H vs p+2H	F2n/F2p and d/u EMC effect in A=3	MARATHON	
QE e	(p+2n) – (2p+n) vs 2(pn)+(nn) - 2(pn)+(pp)	n(k) of protons and neutrons	(e,e'p)	
scattering		Isospin structure of 2N-SRC	SRC @ x>1	
Elastic e scattering	r _n vs r _p	Difference in charge radii Form factors	Elastic	

What we plan to measure @ JLab

	Reaction	Cmpare 3He vs 3H	Measure	Jlab Experiment
	DIS e scattering	n+2H vs p+2H	F2n/F2p and d/u EMC effect in A=3	MARATHON
	QE e $(p+2n) - (2p+n)$ vs $2(pn)+(nn) - 2(pn)+(pp)$	VS	n(k) of protons and neutrons	(e,e'p)
		Isospin structure of 2N-SRC	SRC @ x>1	
	Elastic e scattering	r ² _n vs r ² _p	Difference in charge radii Form factors	Elastic

F2n/F2p, d/u Ratios for x→ 1

Historically extracted using DIS from proton and deuteron targets

$$\sigma \propto F_2(x, Q^2)$$
 Parton Model $F_2(x) = x \sum_i e_i^2(q_i(x) + \overline{q_i}(x))$

$$\frac{F_2^n}{F_2^p} = \frac{1 + 4(d/u)}{4 + (d/u)}$$

F2n/F2p, d/u Ratios for x→ 1

Current status

Extraction of F2n / F2p at high x is sensitive to the poorly known high-momentum components of the deuteron wave function

At Jlab we plan to reduce the error on the ratios as $x \rightarrow 1$ using A=3 mirror nuclei

Measurement of deep inelastic ratios from 3H an 3He nuclei (MARATHON)

spokespersons: G. Petratos, R. Holt R. Ransome, J. Gomez

- 11 GeV, DIS from 3H, 3He and 2H
- Construct EMC cross-section ratios

$$R(^{3}\text{H}) = \frac{F_{2}^{^{3}\text{H}}}{F_{2}^{p} + 2F_{2}^{n}} R(^{3}\text{He}) = \frac{F_{2}^{^{3}\text{He}}}{2F_{2}^{p} + F_{2}^{n}}$$

- Extract
 - F2n/F2p and d/u ratios
- <u>Mirror symmetry makes ratios</u> independent of nuclear effects

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

Precise extraction of F2n/F2p, d/u ratio independent of nuclear effects

What we plan to measure @ JLab

	Reaction	Cmpare 3He vs 3H	Measure	Jlab Experiment
	DIS e scattering	n+2H vs p+2H	F2n/F2p and d/u EMC effect in A=3	MARATHON
	QE e scattering	(p+2n) – (2p+n) vs 2(pn)+(nn) - 2(pn)+(pp)	n(k) of protons and neutrons	(e,e'p)
			Isospin structure of 2N-SRC	SRC @ x>1
	Elastic e scattering	r ² _n vs r ² _p	Difference in charge radii Form factors	Elastic

2N-Short Range Correlations

First evidence of 2N-SRC at x>1.5 seen at SLAC (PRC48, 2451 (1993)) and confirmed at JLab

Х

N. Fomin, et al., PRL 108 (2012) 092052

High momentum tails will result in a constant ratio if dominated by SRC

Isospin dependence of 2N-SRC

Simple SRC model assumes isospin independence

Data show large asymmetry between np, pp pairs:

Qualitative agreement with calculations; effect of tensor force. Huge violation of often assumed isospin symmetry

At Jlab we will use A=3 mirror nuclei to extract the isospin structure of 2N-SRC with low contribution of FSI

Isospin dependance of 2N-SRC

spokespersons: P. Solvignon, J. Arrington, D. Day, D. Higinbotham

- Measure inclusive QE scattering from 3H and 3He
- Extract 2N-SRC ratios asuming

Isospin independent

$$\frac{\sigma_{_{^{3}He}}/3}{\sigma_{_{^{3}H}}/3} = \frac{(2\sigma_{_{p}} + 1\sigma_{_{n}})/3}{(1\sigma_{_{p}} + 2\sigma_{_{n}})/3} \xrightarrow{\sigma_{_{p}} \approx 3\sigma_{_{n}}} 1.40$$

Full n-p dominance (T=0)

$$\frac{\sigma_{_{^{3}}H}/3}{\sigma_{_{^{3}}He}/3} = \frac{(2 pn + 14nn)/3}{(2 pn + 14pp)/3} = 1.0$$

Precision measurement of the isospin dependance in the 2N-SRC region (x>1)

Kinetic Energy Sharing of n and p in Asymmetric Nuclei

Non-interacting two-component Fermi system:

Pauli Principle :

 MAJORITY fermions move FASTER (higher Fermi momentum)

 $\sim 1/k^4$

n-p correlations:

 MINORITY move FASTER (greater paring probability)

Which process dominates?

We plan to find out @ Jlab

O. Hen et al., Science **346** (2014) 614.

Proton and Neutron Momentum Distributions in 3H and 3He

spokespersons: O. Hen, L. Weinstein, S. Gilad, W.Boeglin

- Measure the quasi elastic (e,e'p) reaction on 3H and 3He
 - First measurement of 3H(e,e'p)
 - First measurement of 3He(e,e'p) with minimized effects from FSI
- Measure cross-section sensitive to ground state momentum distributions
- Will show kinetic energy of minority (p in 3H) > kinetic energy of majority (p in 3He)

First high precision model independent extraction of nuclear momentum distribution ratio

What we plan to measure @ JLab

Rea	ection	Cmpare 3He vs 3H	Measure	Jlab Experiment	
DIS scat	e ttering	n+2H vs p+2H	F2n/F2p and d/u EMC effect in A=3	MARATHON	
QE	QE e scattering	(p+2n) – (2p+n) vs 2(pn)+(nn) - 2(pn)+(pp)	n(k) of protons and neutrons	(e,e'p)	
scat			Isospin structure of 2N-SRC	SRC @ x>1	
	stic e ttering	r ² _n vs r ² _p	Difference in charge radii Form factors	Elastic	

Charge Radii of 3H and 3He

spokespersons: J. Arringtone, L. Myers, D. Higinbotham

- Measure elastic scattering cross-section ratio of 3H to 3He
 - Extract the relative charge radius
- One time opportunity for 3H at JLab

•	< <i>r</i> ² _{rms} > _{3H} (fm)	< <i>r</i> ² _{rms} > _{3He} (fm)	ΔR _{rms} (fm)	
GFMC	1.77(1)	1.97(1)	0.20 (1)	Precise (~1%) theoretical
χEFT	1.756(6)	1.962(4)	0.21 (7)	calculations
SACLAY	1.76(9)	1.96(3)	0.20 (10)	Large uncertainties and
BATES	1.68(3)	1.97(3)	0.30(3)	discrepancy in measurements
Atomic		1.959(4)		IIICasaiciiiciiis

Improve precision of ΔR_{rms} by factor of 3-5 over SACLAY to check existing theory and experimental results

Jlab Tritium Target Program

- E12-06-118: Measurement of deep inelastic ratios from 3H/3He (MARTHON)
- E12-11-112: isospin dependance of short range correlations in x>1 region
- **E12-14-011**: Proton neutron momentum distributions in A=3 nuclei
- **E12-14-009**: 3H 3He charge radius difference from elastic scattering

Starts data collecting in Spring 2017!

Uses Jlab tritium target and the Hall A High Resolution Spectrometers.

Tritium Gas Targets @ electron accelerators

Lab	Year	Quantity (kCi)	Thickness (g/cm²)	Current (μΑ)	Power loss (mW/mm)
Stanford	1963	25	0.8	0.5	3.2
MIT-Bates	1982	180	0.3	20	47.7
SAL	1985	3	0.02	30	4.8
JLab	(2016)	1	0.08	20	12.7

- Jlab radioactivity very low
- JLab luminosity ~ 2.0 x 10³⁶ tritons/cm²/s

Jlab Tritium Target

First tritium target @ JLab

- Thin Al windows
 - Beam entrance: 0.010"
 - Beam exit: 0.011"
 - Side windows: 0.018"
 - 25 cm long cell at ~200 psi T₂ g

- Tritium cell filled and sealed at Savannah River National Lab
 - Purity: 99.9% T₂ gas, main contaminant is D₂
 - 12.32 y half-life: after 1 year ~5% of ³H decayed to ³He
- Administrative current limit: 25 μ A

Summery

- Four experiments to study the nucleon structure using 3H and 3He mirror symmetry
 - Elastic to Deep inelastic kinematics
 - Nucleon structure functions, charge radii, momentum distributions and SRC
 - Excellent candidates to test theory calculations
- Experiments are ready to take data starting in Spring 2017!

Backup Slides

Tritium Target Ladder

JLab Tritium Target

Design

Main Body and Entrance Window made of ASTM B209 AL 7075-T651

090 Ci of T2 (0.1 g) ~ 200 psi @295 K L = 25 cm and ID = 12.7 mm Volume = 34 cc

Beam Heating

 $I_{beam} = 20 \mu A$ Max beam current $A_{raster} = 2x2mm^2$ min raster

3W in Entrance 3.3 W in Exit $T_{max} = 125K$ on exit $T_{max} = 120K$ on entrance