Parity Violation and Rare Higgs Decays from a Dark Force

Hooman Davoudiasl

HET Group, Brookhaven National Laboratory

22nd International Spin Symposium, UIUC, September 25-30, 2016

• The Universe is mostly "dark"

ullet Ordinary "visible" matter $\sim 5\%$

• Dark matter (DM) $\sim 27\%$

Basics:

- Stable on cosmological time scales
- Feeble interactions with ordinary matter

Possibility:

- May be from a dark sector (no direct coupling to SM)
- Analogy with SM: dark sector may contain matter and forces

This talk:

- Consider "dark" forces mediated by light new bosons
- Could allow DM interpretation of some astrophysical data Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008
- May explain 3.5σ $g_{\mu}-2$ anomaly

$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 288(80) \times 10^{-11}$$

- Minimal scenario: dark $U(1)_d$ force (dark photon/Z)
- ullet Mediated by vector boson Z_d with coupling g_d
- Interaction with SM via mixing
- $g_{\mu}-2$, dark parity violation, rare Higgs decays, . . .
- ullet A "dark" singlet Higgs ϕ is generally assumed to break $U(1)_d$
- May have suppressed couplings to SM fermions
- ullet Can be an alternative (additional) source of $g_{\mu}-2$
- ullet Potentially measurable μ EDM ("dark" T violation), rare K decays, . . .

Dark Photon

ullet Kinetic mixing: $Z_{d\mu}$ of $U(1)_d$ and B_μ of SM $U(1)_Y$ Holdom, 1986

$$\mathcal{L}_{ ext{gauge}} = -rac{1}{4} \mathrm{B}_{\mu
u} \mathrm{B}^{\mu
u} + rac{1}{2} rac{arepsilon}{\cos heta_{\mathrm{W}}} \mathrm{B}_{\mu
u} \mathrm{Z}_{\mathrm{d}}^{\mu
u} - rac{1}{4} \mathrm{Z}_{\mathrm{d}\mu
u} \mathrm{Z}_{\mathrm{d}}^{\mu
u} \qquad (X_{\mu
u} \equiv \partial_{\mu} X_{
u} - \partial_{
u} X_{\mu})$$

• May be loop induced: $\varepsilon \sim e g_d/(4\pi)^2 \lesssim 10^{-3}$

- Remove cross term, via field redefinition
 - $B_{\mu} \to B_{\mu} + \frac{\varepsilon}{\cos \theta_W} Z_{d\mu}$
 - ullet Z- Z_d mass matrix digonalization
- After redefinition, Z_d couples to EM current $J_{em}^{\mu} = \sum_f Q_f \bar{f} \gamma^{\mu} f + \cdots$

$$\mathcal{L}_{\mathsf{int}} = -e\,\varepsilon\,J_{em}^{\mu}Z_{d\mu}$$

- ullet Like a photon, but arepsilon-suppressed couplings: "dark" photon
- ullet Neutral current coupling suppressed further by $O(m_{Z_d}/m_Z) \ll 1$

Active experimental program to search for dark photon

Pioneering work by Bjorken, Essig, Schuster, Toro, 2009

• An early experimental target: $g_{\mu}-2$ parameter space Fayet, 2007 (direct coupling) Pospelov, 2008 (kinetic mixing)

S. Alekhin et al., arXiv:1504.04855 [hep-ph]

Visibly decaying Z_d nearly ruled out as $g_\mu - 2$ explanation

- ullet Dark photon may be "invisible" if \exists dark X with $m_X < m_{Z_d}/2$
- ullet X could be DM, coupled to Z_d with $g_d\gg earepsilon$: ${\sf Br}(Z_d o Xar X)\simeq 1$
- $g_{\mu}-2$ solution independent of dominant Z_d branching fraction

Constraints:

Dashed lines: BaBar
 Izaguirre, Krnjaic, Schuster, Toro, 2013
 Essig, Mardon, Papucci, Volansky, Zhong, 2013

- ullet Avoid beam dump bounds: $lpha_d \lesssim 10^{-4}$
- E787+E949: $K \rightarrow \pi$ + nothing

HD, Lee, Marciano, Phys. Rev. D 89, (2014)

- Possible production and detection of DM beams in experiments
- p or e on fixed target \Rightarrow production of Z_d (meson decays, bremsstrahlung,...) Batell, Pospelov, Ritz, 2009 (p beam); Izaguirre, Krnjaic, Schuster, Toro, 2013 (e beam dump)
- ullet Relativistic Z_d beam decays into DM particles
- ullet DM interactions with detector via Z_d exchange

Example:

Dark Z

HD, Lee, Marciano, 1203.2947

ullet Z_d may also have mass mixing with SM Z

$$M_0^2 = m_Z^2 \begin{pmatrix} 1 & -\varepsilon_Z \\ -\varepsilon_Z & m_{Z_d}^2 / m_Z^2 \end{pmatrix}$$

$$arepsilon_Z = rac{m_{Z_d}}{m_Z} \delta$$

 $\delta \ll 1$ a model-dependent parameter

- ullet M_0 leads to Z- Z_d mixing angle ξ given by: $an 2\xi \simeq 2rac{m_{Z_d}}{m_Z}\delta = 2arepsilon_Z$
- Induced interactions with kinetic and mass mixing

$$\mathcal{L}_{\rm int} = \left(-e\varepsilon J_{\mu}^{em} - \frac{g}{2\cos\theta_W}\varepsilon_Z J_{\mu}^{NC}\right)Z_d^{\mu}$$

 $J_{\mu}^{NC}=\sum_f (T_{3f}-2Q_f\sin^2\theta_W) \bar{f}\gamma_{\mu}f-T_{3f}\bar{f}\gamma_{\mu}\gamma_5f$; $T_{3f}=\pm 1/2$ and $\sin^2\theta_W\simeq 0.23$

ullet Neutral current coupling of Z_d like a Z, suppressed by $arepsilon_Z$: "dark" Z

Notation: Z_d dark photon or dark Z, depending on the context

A Concrete Dark Z Model

- Mass mixing can naturally occur in a 2HDM
- Type I 2HDM: H_1 and H_2 , where only H_1 has $Q_d \neq 0$
 - ullet $U(1)_d$ as protective symmetry for FCNCs instead of the usual \mathbb{Z}_2
 - SM fermions only couple to H_2 (SM-like); $\langle H_i \rangle = v_i$
 - ullet Generally, also a dark sector Higgs particle ϕ with $\langle \phi \rangle = v_d$

$$m_Z \simeq rac{g}{2\cos heta_{\scriptscriptstyle W}}\sqrt{v_1^2+v_2^2}$$
 and $m_{Z_d} \simeq g_d\,Q_d\,\sqrt{v_d^2+v_1^2}$

• With $\tan \beta = v_2/v_1$ and $\tan \beta_d = v_d/v_1$ we get

$$\varepsilon_Z \simeq (m_{Z_d}/m_Z)\cos\beta\cos\beta_d \Rightarrow \delta \simeq \cos\beta\cos\beta_d$$

• H_1 has $Q_Y Q_d \neq 0 \rightarrow$ generally also expect kinetic mixing

Dark Z Phenomenology

HD, Lee, Marciano, 2012

• "Dark" parity violation [independent of $Br(Z_d \rightarrow visible)$]

Polarized electron scattering, atomic parity violation, ...

- Flavor physics $(m_{Z_d} < m_{\mathsf{meson}})$
- ullet Longitudinal Z_d enhancement $\sim E/m_{Z_d}$

$$\{ \text{Br}(\text{K}^+ o \pi^+ \text{Z}_{\text{d}})_{\text{long}} \simeq 4 \times 10^{-4} \delta^2 \quad ; \quad \text{Br}(\text{B} o \text{KZ}_{\text{d}})_{\text{long}} \simeq 0.1 \delta^2 \} \ o \ |\delta| \lesssim 10^{-3}$$

• Rare Higgs decays, e.g. $H \to ZZ_d$ (on-shell Z_d)

ATLAS Collaboration, 2015

- In 2HDM realization there could be other signals
- ullet Dominant $H^\pm o W^\pm Z_d$ (tree-level) for $m_{H^\pm} \lesssim m_t$

HD, Marciano, Ramos, Sher, 2014 Lee, Kong, Park, 2014

Dark Z and Parity Violation

- \bullet Low Q^2 $(< m^2_{Z_d})$ parity violation from $Z\text{-}Z_d$ mixing
- Z_d effects can be parameterized by HD, Lee, Marciano, 2012

$$G_F o
ho_d G_F$$
 and $\sin^2 \theta_W o \kappa_d \sin^2 \theta_W$

with
$$\rho_d=1+\delta^2\frac{m_{Z_d}^2}{Q^2+m_{Z_d}^2}$$
 and $\kappa_d=1-\varepsilon\frac{m_Z}{m_{Z_d}}\delta\frac{\cos\theta_W}{\sin\theta_W}\frac{m_{Z_d}^2}{Q^2+m_{Z_d}^2}$

• Leads to variation of $\sin^2 \theta_W$ with Q^2 :

$$\Delta \sin^2 \theta_W(Q^2) = -\varepsilon \delta \frac{m_Z}{m_{Z_d}} \sin \theta_W \cos \theta_W f\left(Q^2/m_{Z_d}^2\right)$$

$$f(Q^2/m_{Z_d}^2) = 1/(1 + Q^2/m_{Z_d}^2)$$

Running of $\sin^2 \theta_W$ with Q^2

From HD, Lee, Marciano, Phys. Rev. D 89, no. 9, 095006 (2014)

- Black curve: SM running Marciano, Sirlin, 1981; Czarnecki, Marciano, 1996
- Z_d parameters: $|arepsilon| \sim |\delta| \sim {\sf few} \times 10^{-3}$ (for $g_\mu 2$)
- Two branches corresponding to $\varepsilon\delta$ sign ambiguity ($\Delta\sin^2\theta_W\propto\varepsilon\delta$)

Rare Higgs Decay $H o ZZ_d$

- ullet ATLAS search for $m_{Z_d}>15$ GeV (no lepton jets)
- Non-negligible m_{Z_d} : $\delta' \equiv \delta + \varepsilon \, (m_{Z_d}/m_Z) \tan \theta_W$
- Br(H \rightarrow ZZ_d) \approx (16 18) δ'^2
- EW precision constraints: $\varepsilon \lesssim 0.03$

Hook, Izaguirre, Wacker, 2010 Curtin, Essig, Gori, Shelton, 2014

- $\delta'^2 \lesssim \frac{10^{-4}}{\mathrm{Br}(\mathrm{Z_d} \to \ell^+ \ell^-)}$ (at 2σ)
- Br(Z_d $\rightarrow \ell^+\ell^-) \sim$ 0.3 for Br(Z_d \rightarrow SM) = 1
- Br \ll 0.3 if $Z_d \rightarrow$ dark states
- $|\varepsilon \delta'| \lesssim 0.0008$ (Allowing some cancellation with δ')

From G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 92, no. 9, 092001 (2015)

Measurements of $\sin^2\theta_W$

E.g., Kumar, Mantry, Marciano, Souder, 1302.6263

- SM Prediction (EW fit): $\sin^2 \theta_W(m_Z)_{\overline{\rm MS}} = 0.23124(12)$
- Cs APV: $\sin^2\theta_W(m_Z)_{\overline{\rm MS}}=0.2283(20)$ at $\langle Q\rangle\simeq 2.4$ MeV
- E158 (Moller): $\sin^2\theta_W(m_Z)_{\overline{\rm MS}}=0.2329(13)$ at $\langle Q\rangle\simeq 160$ MeV
- NuTeV $(\nu_{\mu}N)$: $\sin^2\theta_W(m_Z)_{\overline{\rm MS}}=0.2356(16)$ at $\langle Q\rangle\simeq 5$ GeV
- Low Q^2 weighted average:

$$\langle \sin^2 \theta_W(m_Z)_{\overline{MS}} \rangle = 0.2328(9) \rightarrow \Delta \sin^2 \theta_W \approx 0.0016(9)$$

• $\Delta \sin^2 heta_W pprox -0.42 \, arepsilon \, \delta' \, (m_Z/m_{Z_d})$ HD, Lee, Marciano, 2015

From HD, Lee, Marciano, Phys. Rev. D 92, no. 5, 055005 (2015)

- ullet $\epsilon\delta'<0$ range corresponds to 1 σ band for $\sin^2\theta_W$ deviation
- The upper region of the band: tension with constraints
- ullet Interesting implications for planned experiments at different Q^2
- ullet Near future: Q_{weak} results can shed further light on this scenario

Concluding Remarks

- Dark sector may have its own forces, mediated by dark bosons
- Z_d from a $U(1)_d$
- Dark Higgs ϕ , possibly associated with $U(1)_d$ breaking
- Kinetic mixing: dark photon
- ullet Simple extension that could address $g_{\mu}-2$; $m_{Z_d}\lesssim 1$ GeV
- Mass-mixing with Z: dark Z
- New low energy source of parity violation: $\Delta \sin^2 \theta_W(Q^2)$
- Opportunities for polarized electron scattering experiments
- Potential correlated signals in rare Higgs decays