$\label{eq:constraint} The \ Q_{weak} \ Experiment:$ The First Direct Measurement of the Proton's Weak Charge

Martin J. McHugh The George Washington University For the Q_{weak} Collaboration

SPIN 2016

September 26, 2016

・ロト ・回ト ・ヨト ・

Overview

Motivation:

- Precision grants sensitivity to physics beyond Standard Model
- First direct measurement of Q_W^p
- $Q_{\rm weak}$ Methods & Preliminary Results:
 - Experimental Overview
 - Commissioning Data Results (2013)

• Path to final result:

- Improved beam corrections and polarization
- Systematic effect from secondary scattering

イロト イヨト イヨト イヨト

Physics Beyond the Standard Model

- Energy frontier
 - Large Hadron Collider.
 - Creates particle X directly though high energy collisions.
- Precision frontier
 - Jefferson Lab.
 - Looks for the indirect effect of process X.

・ロト ・回ト ・ヨト ・

Extensions to SM

Examples of TeV scale new physics that Q_{weak} would be sensitive to are:

 Q_{weak} is also sensitive to MeV-GeV scale mediators such as:

Dark Photon:

- Astrophysical motivation, observed in positron data
- Might be linked to muon g-2 anomaly

Dark Parity Violation: (Davoudiasl, Lee, Marciano, arXiv 1402.3620)

- New source of low energy PV via mass mixing between Z and Z_d with observable consequences
- Complementary to direct search for heavy dark photons

・ロト ・回ト ・ヨト ・

Standard Model

Standard model describes the couplings between fundamental particles.

$$\begin{array}{c|c} Q & Q_W \\ \hline \mathbf{u} & +2/3 & 1-8/3 \mathrm{sin}^2 \theta_{\mathrm{W}} = -2C_{1u} \\ \mathbf{d} & -1/3 & -1+4/3 \mathrm{sin}^2 \theta_{\mathrm{W}} = -2C_{1d} \end{array}$$

5

1

111

イロト イヨト イヨト イヨト

Proton's electric charge:

$$Q^{p} = 2\left(+\frac{2}{3}\right) + 1\left(-\frac{1}{3}\right) = +1$$

Proton's neutral weak charge:

$$Q_W^p = 2\left(1 - \frac{8}{3}\sin^2\theta_W\right) + 1\left(-1 + \frac{4}{3}\sin^2\theta_W\right)$$

= 1 - 4\sin^2\theta_W \approx 0.07

Weak mixing angle parametrizes the mixing between the two neutral currents in the model. With the discovery of the Higgs boson, it is now predicted by the SM.

$$\begin{pmatrix} |\gamma\rangle \\ |Z^0\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_W & \sin\theta_W \\ -\sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} |B^0\rangle \\ |W^0\rangle \end{pmatrix}$$

Parity-Violating Electron Scattering Measurement

 Q_{weak} experiment: scatter longitudinally polarized electrons off of unpolarized hydrogen.

An asymmetry is formed by counting scattered electrons from each helicity state:

$$A_{ep} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{2\mathcal{M}_{\gamma}^*\mathcal{M}_Z}{|\mathcal{M}_{\gamma}|^2}$$

 A_{ep} comes from the interference of the electromagnetic and weak exchange amplitudes.

イロト イヨト イヨト イヨ

Extracting Q_W^p from A_{ep}

$$\mathcal{M}_Z \propto \frac{\mathrm{g}^2}{-Q^2 + m_Z^2} \qquad \mathcal{M}_\gamma \propto \frac{\mathrm{e}^2}{-Q^2}$$

As $Q^2 \to 0$, $\mathcal{M}_Z \sim \frac{\mathrm{g}^2}{m_Z^2} \sim G_F$
 $\Longrightarrow \frac{\mathcal{M}_Z}{\mathcal{M}_\gamma} = \frac{G_F}{\alpha} Q^2$

Where M_Z is the weak neutral current, M_γ is the electromagnetic current, Q^2 is the momentum transfer, G_F is the Fermi coupling constant and α is the fine structure constant.

$$A_{ep} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{2\mathcal{M}_Z}{\mathcal{M}_{\gamma}} = \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_W^p + F^p(Q^2, \Theta)\right]$$

$$A_{ep} \text{ depends on hadronic form factors}$$
As $Q^2 \to 0, \Theta \to 0$

$$A_{ep} = \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + Q^4 B(Q^2, \Theta)\right] \approx -0.23 \text{ ppm}$$

・ロト ・回ト ・ヨト ・ヨト

Jefferson Lab and CEBAF

- $\bullet~\mathsf{Q}_{\mathsf{weak}}$ ran in Hall C of Jefferson Lab
 - Three data taking periods:
 - * Run 0: Nov 2010 Jan 2011 (Published)
 - * Run I: Feb May 2011
 - * Run II: Nov 2011 May 2012 (Analysis ongoing)
- Target:
 - ▶ Liquid H₂ (≈34 cm thick)
 - ► Al alloy windows (≈0.12 mm thick)
- Kinematics:
 - $E = 1.155 \pm 0.003 \text{GeV}$
 - $I_{\text{beam}} = 180 \mu A$

▶
$$P_L = 89\%$$

- $Q^2 = 0.0250 \pm 0.006 \text{GeV}/\text{c}^2$
- $\bullet \ \theta_{\rm lab} = 7.9^{\circ} \pm 0.3^{\circ}$

The Q_{weak} apparatus

"The Qweak Experimental Apparatus," NIM A 781, 105 (2015)

イロン イロン イヨン イヨン

The Q_{weak} apparatus

Quartz Cerenkov Bars

M. J. McHugh (GWU)

The Querk Experiment

September 2016 10 / 22

Measuring the PV Asymmetry

- Flip helicity at 960 Hz in quartet pattern [(+,-,-,+) or (-,+,+,-)]
- Integrate PMT current for each helicity state
- Normalize integrated signal (S) with beam charge (Q) to get yield (Y):

$$Y = \frac{S}{Q}$$

• Form asymmetry for each quartet:

$$A_{\rm raw} = \frac{Y_R - Y_L}{Y_R + Y_L}$$

• Correct A_{raw} for beam systematics

$$A_{\rm msr} = A_{\rm raw} + A_T + A_L - \sum_i \frac{\partial A}{\partial \chi_i} \Delta \chi_i$$

- A_T Transverse polarization leakage
- A_L PMT non-linearity
- $\frac{\partial A}{\partial \chi_i}$ sensitivity to helicity-correlated beam parameters

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Qweak Backgrounds

There are several backgrounds that dilute the parity-violating asymmetry and need to be corrected.

$$A_{ep} = R \frac{\frac{A_{msr}}{P} - \sum_{i} f_{i} A_{i}}{1 - \sum_{i} f_{i}}$$

- A_{ep}: Parity-violating asymmetry
- R: Radiative and acceptance correction
- A_{msr}: Measured asymmetry by experiment
- P: Measured beam polarization
- f_i : Background dilution (Y_i/Y_T)
- A_i: Background asymmetry

Backgrounds:

- Aluminum target windows
- Beamline background
- O Neutral scattered events
- Inelastic scattered events

イロト イヨト イヨト イヨト

First Results

The following results were published using the small ($\sim 4\%$) data set taken during commissioning.

Run	Dates	Data taken (Coulomb)
Run 0	Nov 2010-Jan 2011	\sim 40 C
Run 1	Feb 2011-May 2011	\sim 360 C
Run 2	Nov 2011-May 2012	\sim 680 C

Published in 2013: Phys. Rev. Lett. 111, 141803 (2013)

 $A_{PV} = A_{ep} = -279 \pm 35(stat) \pm 31(sys) \text{ ppb}$

M. J. McHugh (GWU)

First Results

Global analysis method by Young et al. [Phys. Rev. Lett. 99, 122003, (2007)] used to extract $Q^p_W.$

Extracted proton's weak charge:

- $Q_W^p(PVES) = 0.064 \pm 0.012$
- $Q_W^p(SM) = 0.0710 \pm 0.0007$

Extracted neutron's weak charge:

- $Q_W^n(PVES) = -0.975 \pm 0.010$
- $Q_W^n(SM) = -0.9890 \pm 0.0007$

イロト イヨト イヨト イヨト

Weak Mixing Angle

- Black line is Standard Model prediction based on Z-pole results.
- Black point is $\sin^2 \theta_W$ from Run 0.
- Green point is estimated error bar on final complete set.

M. J. McHugh (GWU)

・ロン ・回 と ・ ヨン・

Beamline Background

Correction is made by measuring background dilution and correcting with correlations from background detector.

Correction makes improvement to fit.

A D > A B > A B >

Beam Polarization

Run 0: Only Møller data Run I & 2: Hall-C Compton polarimeter online

Expt. strategy: minimize systematics

Compton: A. Narayen et al. Phys. Rev. X 6, 011013 (2016) Moller + Compton: "The Q_{weak} Experimental Apparatus," NIM A 781 105 (2015) = 2

M. J. McHugh (GWU)

The Q_{weak} Experiment

Secondary Scattering

- Spin precession of scattered electron through spectrometer magnet give some transverse polarization, P_{\perp} .
- P_⊥ in combination with lead pre-radiators in front of quartz bars causes a transverse asymmetry that is the same order but opposite sign in the + and - PMTs.

Effect:

$$\mathsf{A}_{\mathsf{diff}} = \mathsf{A}_{-} - \mathsf{A}_{+}$$

Q_{weak} measures:

$$\mathsf{A}_{\mathsf{PV}} = \frac{\mathsf{A}_- + \mathsf{A}_+}{2}$$

イロト イヨト イヨト イヨト

Secondary Scattering Effect

- Should cancel with symmetric detectors. We live in the real world.
- Level of cancellation is being investigated with GEANT4 simulation and bench tests.
- Each of the 8 bars has slightly different physical properties and a separate correction will be made for each.
- Last significant systematic uncertainty before we unblind.

A D > A B > A B >

Exponential Run 18522 Octant 5 positive PMT

Projected Final Asymmetry Error

This figure shows anticipated final uncertainty placed on the SM prediction line.

・ロト ・日下・ ・ ヨト・

Summary

- \bullet Initial PRL published in 2013 with \sim 4% of total collected data.
- Analysis is nearing completion on the full data set. Unblinding in early spring.
- Final result is anticipated to be statistically limited.
- Ancillary physics analyses are ongoing, with future publications planned.

イロト イヨト イヨト イヨ

The Qweak Collaboration

97 collaborators 23 grad students 10 post docs 23 institutions

Institutions: 1 University of Zagreb ² College of William and Mary ³ A. I. Alikhanyan National Science Laboratory 4 Massachusetts Institute of Technology ⁵ Thomas Jefferson National Accelerator Facility 6 Ohio University ⁷ Christopher Newport University 8 University of Manitoba. ⁹ University of Virginia A SEARCH FOR 10 TRIUME NEW PHYSICS 11 Hampton University 12 Mississippi State University 19 Virginia Polytechnic Institute & State Univ 14 Southern University at New Orleans 15 Idaho State University ¹⁶ Louisiana Tech University 17 University of Connecticut ¹⁸ University of Northern British Columbia 19 University of Winniped ²⁰ George Washington University 21 University of New Hampshire 22 Hendrix College, Conway

²³ University of Adelaide

²⁴Syracuse University

D. Androic, ¹ D.S. Armstrong, ² A. Asaturyan, ³ T. Averett, ³ J. Balewski, ⁴ K. Bartlett, ² J. Beaufait, ⁵ R.S. Beminiwatha, ⁶ J. Benesch, ⁵ F. Benmokhtar, ⁷ J. Birchall, ⁸ R.D. Carlinl, ⁵ G.D. Cates, ⁹ J.C. Cornejo, ² S. Covrig, ⁶ M.M. Daiton, ⁹ C.A. Davis, ¹⁰ W. Deconinck, ² J. Diefenbach, ¹¹ J.F. Dowd, ² J.A. Dunne, ¹² D. Duttai, ¹⁴ W.S. Dualt, ¹¹ M.E. Taasar, ¹⁴ W.R. Faik, ⁸ J.M. Finn, ² T. Forest, ¹⁵ 16: D. Gaskell, ⁵ M.T.W. Gericke, ⁸ J. Grames, ⁵ V.M. Gray, ² K. Grimm, ^{16, 2} F. Guo, ⁴ J.R. Hoskins, ² K. Johnston, ¹⁶ D. Jones, ⁹ M. Jones, ⁵ R. Jones, ¹⁷ M. Kargiantoulakis, ⁹ P.M. King, ⁶ E. Korkmaz, ¹⁸ S. Kowalski, ⁴ J. Leacock, ¹³ J. Leckey, ² A.R. Lee, ¹³ J.H. Lee, ^{6, 2} L. Lee, ¹⁰ S. MacEwan, ⁹ D. Mack, ⁵ J.A. Magee, ⁷ R. Mahurin, ⁸ J. Mammel, ¹³ J.W. Martin, ¹⁹ M.J. McHugh, ² D. Meekins, ⁵ J. Mei, ⁵ R. Michaels, ⁶ A. Micherdzinska, ²⁰ A. Mkrtchyan, ³ H. Mkrtchyan, ¹ N. Korgan, ¹⁰ K.E. Myers, ²⁰ A. Narayan, ¹² L.Z. Ndukum, ¹² V. Nelyubin, ⁹ H. Nuhait, ¹⁶ Nuruzzaman, ^{11, 12} W.T.H van Oers, ^{10, 6} B. Sawatzky, ⁴ T. Seva, ¹ M.H. Shabestari, ¹² R. Silwal, ⁹ N. Simicevic, ¹⁸ G.R. Smith, ⁶ P. Solvignon, ⁶ D.T. Spayde, ²² A. Subedi, ¹² R. Subedi, ²⁰ P. Zung, ²⁴ and S. Zhamkochyar, ³

Spokespersons Project Manager Grad Students

M. J. McHugh (GWU)

September 2016 22 / 22