Precision measurements with W and Z/γ^* bosons with the ATLAS detector

22nd International Spin Symposium University of Illinois and Indiana University, September 25-30, 2016

W and Z production in Drell-Yan processes

• Drell-Yan di-lepton production of W and Z bosons offer clear signature, large statistics, and small background

- Benchmark for understanding of pQCD processes
 - Predictions at NNLO QCD with NLO EW corrections
 - ➤ Validation of Matrix Element (ME) + Parton Shower (PS) montecarlos
- ➤ Constraints on parton distribution functions (PDFs)
- ➤ High precision SM tests and extraction of SM parameters
- ➤ Double differential high-mass Drell-Yan cross section JHEP 08 (2016) 009
- Study of the transverse momentum and ϕ^*_{η} distributions EPJC 76(5), 1-61 (2016) of DY lepton pairs
- Measurement of angular coefficients in Z-boson JHEP 08 (2016) 159 production

All measurements performed with 20.3 fb⁻¹ of pp collisions data at 8 TeV (RUN I)

Double-differential high-mass **Drell-Yan cross section at 8 TeV**

JHEP 08 (2016) 009 arXiv:1606.01736

Study of high-mass Drell-Yan processes at 8 TeV

- Different sensitivity to u-type, d-type and anti-quarks for on-shell (Z) and off-shell (γ * dominated)
- Sensitive to the photon PDF through the photon-induced (PI) process $\gamma\gamma \rightarrow l^+l^-$

• Sensitivity to New Physics, and bkgd to dilepton resonant-states searches at high mass

Measurement of double-differential cross sections:

$$\frac{d^2\sigma}{dm_{\parallel}d|y_{\parallel}|} \quad \text{allows to constrain PDFs} \\ \text{at large } x : \left(x_{1,2} = \frac{m_{\parallel}}{\sqrt{s}}e^{\pm y_{\parallel}}\right)$$

$$rac{d^2\sigma}{dm_{_{\parallel}}d\left|\Delta\eta_{_{\parallel}}
ight|}$$

helps to disentangle PDF, EW, and PI contributions

- Use 20.3 fb⁻¹ of data at \sqrt{s} =8 TeV
- Measure $Z/\gamma^* \to \mu\mu$ and $Z/\gamma^* \to ee$
- Fiducial phase space at Born level:
 - Mass range $116 < m_{ll} < 1500 \text{ GeV}$
 - $-p_T > 40 \text{ GeV (leading lepton)}$
 - $-p_T > 30 \text{ GeV (subleading lepton)}$
 - $-\eta < 2.5$

High Mass Drell-Yan at 8 TeV

Dominant background

- top (*tt* and *Wt*) & di-boson production estimated from MC
- QCD multi-jet estimated with data-driven methods

Systematic uncertainties between 0.5 and \sim 3% (not including luminosity uncert.) increasing with m_{II}

- Background estimate
- Electron energy scale
- Muon reco. efficiency and momentum scale calibration

- Good agreement between data and predicted results
 - Combined fiducial cross section at Born level compared to NNLO pQCD calculations
 - Theoretical predictions from FEWZ 3.1 using MMHT14 PDF set

High Mass Drell-Yan at 8 TeV

- Ratio of theoretical calculations to combined double-differential cross section
 - Comparison to PDF sets:
 - MMHT2014, CT14, HERAPDF2.0, NNPDF3.0, ABM12
 - ABM12 seems favored
 - Contribution of PI process included, estimated at LO using photon PDF
 - 1% at low mass, but reaches 15% at high mass
 - Theory uncertainties larger than experimental ones
 - PDF uncert. for $m_{ll} < 200 \text{ GeV}$
 - PI uncert. for $m_{ll} > 200 \text{ GeV}$

==> potential for significant constraints of proton and photon PDFs

High Mass Drell-Yan at 8 TeV

Impact of the measured cross sections on photon PDF sets

- Inclusion of $d^2\sigma/dm_{II}d|y_{II}|$ and $d^2\sigma/dm_{II}d|\Delta\eta_{II}|$ data into PDF fits
 - Bayesan reweighting used for MC replica representing NNPDF2.3qed photon PDF based on χ^2 minimization (replicas not describing well get smaller weight assigned)
- Shaded area indicates new PDF after inclusion of the data
- Strong sensitivity to the photon PDF ==> Large reduction of the uncertainty
 - largest sensitivity at small $|y_{ll}|$ and large $|\Delta \eta_{ll}|$

Measurement of the transverse momentum and ϕ_n^* distributions of **Drell-Yan lepton pairs**

Eur. Phys. J. C 76(5), 1-61 (2016) arXiv:1512.02192

Measurement of p_T & ϕ_n^* @ 8 TeV

Motivations:

- p_T^Z data provides a test for pQCD (NNLO), resummed (NNLO+NNLL), and PS models
- Alternative variable: $\phi^* = \tan\left(\frac{\pi \Delta\phi}{2}\right) \cdot \sin\left(\theta_{\eta}^*\right)$ where $\cos\left(\theta_{\eta}^*\right) = \tanh\left(\eta^- \eta^+\right)/2$ ϕ_{η}^* depend only on the directions of leptons Get rid of momentum calibration uncertainties
- Three l^+l^- mass regions explored, with boundaries: [46, 66, 116, 150 GeV]

Data at the Z peak compared to ResBos:

- Typical accuracy for $p_T < 30$ GeV: 0.3-0.4%
 - can be used to reduce uncertainties on $p_{\rm T}$ modeling
- Good agreement at low values
 - non-perturbative effects; soft-gluon emission
- Disagreement at high p_T and ϕ_n^* values
 - emission of hard partons not well reproduced

x-axis aligned according to $\sqrt{2}M_z\phi^*\approx p_T$ ATLAS $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ResBos / Data Data - statistical uncertainty Data - total uncertainty ResBos uncertainty 66 GeV $\leq m_{\parallel} < 116$ GeV, $|y_{\parallel}| < 2.4$ 1/o do/dφ*_η 0.9 10-2 10⁻¹ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ResBos / Data Data - statistical uncertainty Data - total uncertainty ResBos uncertainty $66 \text{ GeV} \le m_{\parallel} < 116 \text{ GeV}, |y_{\parallel}| < 2.4$ $1/\sigma \ d\sigma/dp_T^{\parallel}$

10

p₊ [GeV]

$p_{\rm T} & \phi_{\eta}^* @ 8 \text{ TeV}$: comparison to parton shower approaches

MC generators used: Sherpa; POWHEG + HERWIG; POWHEG + PYTHIA

MC/Data ratio of $(1/\sigma) d\sigma/d\phi_{\eta}^*$ for the 3 mass regions

- Significant disagreement between simulation and data in the *Z*-peak region
- Large differences between Sherpa and POWHEG, in particular for large ϕ^*

MC/Data ratio of $(1/\sigma) d\sigma/dp_T^{ll}$ at the Z-peak, for 6 rapidity y^{ll} regions

- Agreement not better than 10% for $5 < p_T^{ll} < 100 \text{ GeV}$
- Best descritpion of data provided by POWHEG+PYTHIA

$p_{\rm T} \& \phi_n * @ 8 \text{ TeV}$: comparison to fixed order QCD

Born-level data compared to:

- DYNNLO
- DYNNLO + NLO EW

MC/Data ratio of $(1/\sigma) d\sigma/dp_T^{ll}$

(analysis extended at very low m^{ll} regions for $y^{ll} < 2.4$)

- Predictions are not expected to describe the low p_T^{ll} region
 - soft-gluon emissions become important
- For $p_T^{ll} > 30 \text{ GeV}$:
 - DYNNLO reproduce reasonably well the shape of data
 - systematically ~15% below
 - NLO EW corrections have a very limited impact
 - Recent calculations based on Z+jet @NNLO show improvement

27 September 2016, Urbana F. Anulli 11

Measurement of angular coefficients in Z-boson production

JHEP 08 (2016) 159 arXiv:1606.00689

Angular coefficients in Z-boson production

Motivations:

• Spin correlation between initial quarks and decay leptons

- Probe fixed-order QCD predictions
- Probe parton-shower approach
- Ingredient for future precision EW measurements
- 5-dimension differential cross section decomposed as a sum of harmonic polynomials $P_i(\cos\theta,\phi)$ times polarization coefficients $A_{0-7}(p_T^Z,y^Z,m^Z)$.

Unpolarized cross section

$$\frac{d\sigma}{dp_T^Z dy^Z dm^Z d\cos\theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$$

$$\left\{ (1 + \cos^2\theta) + \frac{1}{2} A_0 (1 - 3\cos^2\theta) + A_1 \sin 2\theta \cos\phi + \frac{1}{2} A_2 \sin^2\theta \cos 2\phi + A_3 \sin\theta \cos\phi + A_4 \cos\theta + A_5 \sin^2\theta \sin 2\phi + A_6 \sin 2\theta \sin\phi + A_7 \sin\theta \sin\phi \right\}$$

Angles defined in the Collins-Soper Frame

- A_0 Transverse polarization
- A₂ Longitudinal polarization
- A_1 interference between T and L polarizations
- A₃ and A₄ sensitive to the Weinberg angle
- LO: only A_4 different from zero
- NLO: A_0 -- A_4 non zero,
 - $A_0 = A_2$ (Lam-Tung relation)
- NNLO: also A_5, A_6, A_7 slightly different from zero at large p_T^Z
 - $A_0 \neq A_2$

Angular coefficients in Z-boson production: results

- Use 20.3 fb⁻¹ of *pp* collisions at 8 TeV
- 3 independent channels:
 - Muons (CC), electrons (CC), electrons (CF) (CC=central-central. CF=central-forward)
 - 80 < m_{II} < 100 GeV. Results in three y^Z bin, and y^Z -integrated
- A_i extracted by fitting templates of the $P_i(\cos\theta,\phi)$ to the reconstructed angular distributions

• Templates obtained from MC by sculpting the angular distributions according to fiducial

- Data compared to NNLO pQCD with PS (DYNNLO and POWHEG+MINLO) predictions
- Deviations between data and predictions in A_2 (and A_0 – A_2) explained by higher-order QCD effects missing in the calculations
- A_0 – A_2 different from 0, as expected from theory already at NNLO

Angular coefficients in Z-boson production: results

General data-theory agreement

• $A_{5,6,7}$ seems to tend to a small non-zero value at high $p_T^{\top Z}$ as expected, but the experimental sensitivity is not enough, yet.

Angular coefficients in Z-boson production: results

Study of the effects of various PS generators

- Adding a PS simulation to POWHEG brings the simulation closer to data and DYNNLO @ NNLO, for A_0 , A_2 and A_0 - A_2 .
 - Consistent with the assumption that the PS models emulates higher-order effects.
- No generators however describes A_0 - A_2 .
- Inconsistency between PYTHIA 8 and HERWIG for A_I over most of p_T^Z range.
 - probe different parton-shower models and matching schemes

Summary

- Measurement of Drell-Yan processes at LHC allows to probe many aspects of QCD in both perturbative and non-perturbative regime
- A few recent results obtained with RUN-I data (at $\sqrt{s} = 8 \text{ TeV}$) have been shown.
- Double differential high-mass Drell-Yan cross sections
 - Experimental precision better than 1% at lower explored mass regions
 - Data potential to constraint the proton PDFs; Large impact of data on photon PDF
- Precise measurement of p_T^Z and $\phi * \text{in } Z \rightarrow l^+l^-$
 - Stringent tests of resummation and pQCD calculations
- Precision measurement of the full set of angular coefficients in Z-boson production
 - DYNNLO in agreement with measured coefficients (with exception of A_2 and A_0 - A_2)
 - MC generators show different description of data
- Most analysis are going to be updated with the additional data collected at 13 TeV

Summary

- Measurement of Drell-Yan processes at LHC allows to probe many aspects of QCD in both perturbative and non-perturbative regime
- A few recent results obtained with RUN-I data (at $\sqrt{s} = 8$ TeV) have been shown.
- Double differential high-mass Drell-Yan cross sections
 - Experimental precision better than 1% at lower ex mass regions
 - t of data on photon PDF – Data potential to constraint the proton PDF
- Precise measurement of p_T^Z and ϕ
 - Stringent tests of resummatic
- Stay Tuned!

 Stay Tuned!

 Stay and coefficients in Z-boson • Precision measurem production
 - DYNN
 - ared coefficients (with exception of A_2 and A_0 – A_2) - MC ge. description of data
- Most analyst are going to be updated with the additional data collected at 13 TeV

BACKUP slides

Drell-Yan transverse distributions

Good agreement with ResBos at low ϕ^* values for all $|y_{II}|$ and m_{II} bins

Consistent for above Z-peak region

In Z-peak region disagreement for $\phi^* \geq 2$

Below Z-peak region disagreement for $\phi^* \geq 0.4$

Lack of NNLO QCD corrections for the γ^* and Z/γ^* interference

Predictions on angular coefficients: Impact of higher order QCD corrections

• $A_{5,6,7}$ – arise from gluon loops, slightly different from zero at NNLO for large p_T^Z

Study of $W^{\pm} \rightarrow l \nu$ and $Z/\gamma^* \rightarrow l^+ l^-$ inclusive production at 13 TeV

Phys. Lett. B 759 (2016) 601 arXiv:1603.09222

Inclusive production of $W^{\pm} \rightarrow l \nu$ and $Z/\gamma^* \rightarrow l^+ l^-$

- First integrated cross section measurements at $\sqrt{s}=13$ TeV:
 - Based on 81 pb⁻¹
 - $W \rightarrow \mu v$, $W \rightarrow ev$: ~900k selected events
 - $Z \rightarrow \mu\mu$, $Z \rightarrow ee$: ~80k selected events
 - Combination of e and μ channels
 - Comparison with NNLO pQCD, with NLO EW effects included
 - Complementary to ep DIS data from HERA

```
Fiducial volume W 	o \mu 
u, e 
u: m_T^W > 50 	ext{GeV}
Z 	o \mu \mu, e 
e: 66 	ext{GeV} < m_{||} < 116 	ext{GeV}
p_T^{l, 
u} > 25 	ext{GeV}, |\eta_l| < 2.5
```

- QCD multi-jet bkgd from data-driven approach
- Other bkgds (mainly EW processes) from MC
- Measure fiducial cross sections
- Extract total cross sections, and ratios of cross sections

W and Z cross sections and ratios

• Ratio of the predicted to measured fiducial cross section for the combined electron and muon channels using various PDFs

- → Improved precision for W and Z:
 - ▶ 3% and 1% + 2.1% of luminosity
- The measurements agree well with the predictions

Ratios of fiducial cross sections

• Sensitive to the low- $x u_v - d_v$ PDFs

• Sensitive to the strange-quark PDF

W and Z cross sections vs \sqrt{s}

- The measured values of $\sigma \times BF$ compared to the theoretical predictions based on NNLO pQCD calculations
 - Good agreement between data and theory
 - Cross section increase following the expectations (about twice than values at 7 TeV)