Preliminary Results of a Tungsten Powder Epoxy Scintillating Fiber EMCAL for sPHENIX

Vera Loggins
University of Illinois Urbana Champaign
Sept 27, 2016

22nd International Spin Symposium
Studying QCD at RHIC

RHIC the most versatile hadron collider in the world, designed to study

- Simple QCD bound states - the proton
- Collections of QCD bound states - nuclei
- QCD deconfined - Quark-Gluon Plasma

A single facility capable of nucleus-nucleus, proton-nucleus, and proton-proton collisions. World's only polarized p+p collider!
sPHENIX focuses on jet and hard probes as well as quarkonia

- Dijet and photon-jet correlation measurements will constrain x for polarized pdf measurements and can provide sensitivity to nonperturbative transverse momentum effects
- Diphoton measurements will offer a Drell-Yan-like process to study transverse-momentum-dependent pdfs
- Heavy quarkonium will provide sensitivity to gluon distributions
- See talks by H.W. Yu (session Helicity), R. Fatemi (session Future), and J. Lajoie (session Future)
- RHIC Cold QCD Plan: arXiv:1602.03922
- Letter of Intent to use sPHENIX as a foundation for a day-1 Electron Ion Collider detector: arXiv:1402.1209
Physics:
- Measure jets, γ-jets, and direct single γ's up to high p_T.
- Identify electrons and measure their energies for measuring γ's.
- Kinematic range will have more overlap with the LHC.
- jet energy resolution:
 - single particle: $\sigma / E < 100\% / \sqrt{E}$
 - jet: $\sigma / E < 120,150\% / \sqrt{E}$
- gamma-jet emcal energy resolution:
 - $\sigma / E < 15\% / \sqrt{E}$

Detector:
- Large solid angle coverage (± 1.1 in η, 2π in ϕ)
- good energy resolution
- Fit inside the BaBar magnet
 - minimal radial space (dense)
 - compact (short X_0, small R_M)
 - high segmentation for heavy ion physics

See talks in H.W. Yu (session Helicity)
sPHENIX EMCal

Tungsten-fiber block

\[\Delta \eta \times \Delta \phi \approx 0.025 \times 0.025 \]

96 \times 256 readout channels

Inner radius must be \(\sim 90 \) cm for tracking & particle ID
Inner radius must be small
\(\Delta R = 116 \) cm - 90 cm (26cm)

V. Loggins UIUC 5
Absorber
Matrix of Tungsten powder and epoxy w/embedded scintillating fibers

Scintillating Fiber (Kuraray SCSF78)
Diameter 0.47 mm, spacing 1mm

Calorimeter Specs
Density \(\sim 10\text{g/cm}^3\)
\(X_0 \sim 7\text{mm}\) (18 \(X_0\) total), \(R_M\sim 2.3\text{ cm}\)

Readout
Silicon Photomultipliers (SiPMs)
Works inside magnetic field

Hamamatsu S12572-015P
Projectivity

The reason for a 2D (fully) projective design is due to the high multiplicity in central heavy ion collisions.

The first way to make the fibers projective was to tilt them in 1D.
Projectivity: 1D vs. 2D

Projective in polar direction

Non-Projective in polar direction

Average cluster ~8 towers

Average cluster ~12+ towers
Collaborate with Brookhaven National Laboratory for assembly

fibers & meshes

fibers, meshes, & tungsten

epoxy added

epoxy drying for 24 hours

module ready to be machined

finished

sPHENIX EMCal 1D Production @UIUC

V. Loggins UIUC 9
The goal is for detector resolution and segmentation to be better than the limitations on photon reconstruction due to the underlying event background in a heavy ion event.

Hijing Central Au+Au

- **Average energy per tower** \(\sim 38 \text{ MeV} \)
- **Energy in a 3x3 tower sum** \(\sim 341 \text{ MeV} \)

3x3 tower \(\sim \) size of single photon cluster

Average energy of tower \(\sim 341 \text{ MeV} \) from the underlying event in central Hijing Au+Au event.
Fermilab Test Beam 2016
Fermilab Test Beam 2016

Meets design goals of $<100%/\sqrt{E}$ and $<15%/\sqrt{E}$ for EMCal

RHIC/AGS User’s Meeting June 2016
https://www.bnl.gov/aum2016/content/workshops/Workshop_2b/campbell_sarah.pdf
V. Loggins UIUC 12
sPHENIX EMCal 2D Production @UIUC

...for next Test Beam!

fibers & meshes,
fibers, meshes, & tungsten
2D module ready to be machined

final 2D module
• We have completed the first Test Beam with EMCal prototype version 1 8x8 towers of 1D projective blocks.
• Results are consistent with design goals.
• Version 2 prototyping of 2D projective blocks is underway.
• sPHENIX is part of plans for BNL after the completed final PHENIX run in 2016.
• First Draft of sPHENIX Test Beam Paper is completed, plan to publish this fall 2016.
• We look forward to Physics in 2022.
• Second Test Beam in Jan-Feb 2017!