

Elastic scattering of neutron-rich ⁶He nuclei from polarized protons at 200 MeV/A

S. Chebotaryov

Outline

- Role of spin-dependent interactions in unstable nuclei
 - How to experimentally study spin-dependent interactions
- Solid polarized proton target at RIKEN
 - Polarized targets: "brute force" DNP & triplet DNP techniques
 - Overview of the target system
 - Physics opportunities
 - Brief overview of carried out and planned experiments with polarized proton target
- p-6He elastic scattering experiment
 - Motivation spin-orbit coupling in unstable nuclei
 - Experimental setup
 - Target operation
 - Present results of data analysis: event selection & background extraction

Role of spin-dependent interactions in unstable nuclei

L. Tanihata et al. / Progress in Particle and Nuclear Physics 68 (2013) 215-313

- Change in shell structure of unstable nuclei
 - Magic numbers newly appear or disappear
 - Reduction of spin orbit splitting $(E_{j=l-\frac{1}{2}} E_{.j=l+\frac{1}{2}})$

Investigating role of spin-dependent interactions in unstable nuclei is essentially important

How to experimentally study spin-dependent interactions

RI-beam species are short lived ⇒ Must be supplied as a beam

Experiments involving polarized protons with stable and unstable nuclei

Polarized proton target is required

How to study spin-dependent interactions

Requirements of RI-beam experiments to the target:

Avoid distortion of outgoing proton trajectories

 $(E_p = 40 - 200 \text{ MeV})$

- Must work under low magnetic field
 - Angular resolution for recoil protons must be better than 1 deg.:

 $B_0 < 0.15 T$

Polarized proton targets using DNP technique

- Dynamic Nuclear Polarization
 - Electrons are firstly polarized
 - Electron polarization is transferred to protons system
- How to obtain high electron polarization
 - "Brute force" DNP

(use electron thermal polarization)

$$P = \tanh(\frac{\gamma \hbar B_0}{2kT})$$

- **Triplet DNP**
 - Electrons optically excited to triplet state
- Spontaneous population difference of triplet sublevels

Weakly dependent on $\boldsymbol{B}_{\boldsymbol{a}}$

Polarized proton target at RIKEN

Physics opportunities: Spin-orbit coupling in proton-nucleus scattering

- Polarization phenomenon in elastic scattering
 - Large spin-asymmetry observed in p-⁴He elastic scattering
 - O. Chamberlian et al., Phys. Rev. 102 (1956) 1659.
- Direct evidence of "strong" spin-orbit coupling in nuclei
 - E. Fermi, Nuovo Climento 10 (1954) 407.

Extensive studies of spin-orbit potential ⇒
Almost constant depth/diffuseness for stable nuclei

Physics opportunities: Spin-orbit coupling in proton-nucleus scattering

Spin-orbit potential:

- Peaks at nuclear surface
- Almost constant for stable nuclei
- What is its shape for unstable nuclei with extended density distribution?
- Effects of the difference between proton and neutron density distributions?

$$U_{\text{so}} = [1 + \alpha \rho(r)]^{-1} \frac{1}{r} \left[\frac{d\rho}{dr} \right]$$

Vector analyzing power in elastic scattering from unstable nuclei with extended neutron distribution

Physics opportunities: Change in spin-orbit splitting

- Determination of spin-orbit splitting
 - Single-particle states are fragmented due to residual interaction
 - o (p,2p) reaction
 - distribution of $j_{>}$ and $j_{<}$ strengths

Change of spin-orbit splitting can be explored with (p,2p)

Physics opportunities: Resonant scattering

Advantages:

- Excitation function can be scanned with single E_{beam}
- High resolution of E_{CM}: 30 80 keV
- Large cross section: 10 100 mb/sr

Powerful tool for resonance and particle unbound states

What can we add by polarization?

- Clear assignment of j
 - o Projectile with non-zero spin
 - Sensitive to configuration mixing
- Disentangle overlapping broad resonances

p-6He elastic scattering experiment

Motivation

- Explore change of spin-orbit coupling in p-A scattering
- To clarify its relevance to halo structure of ⁶He

Overview

- SAMURAI, RIBF, RIKEN
- Beam: 500 kpps ⁶He @ 200 A MeV
- o 5 days in June 2016

Measurement

- Measurement of vector analyzing power for p-6He
 - Angular region (CM): 35 59 deg.
 - q transfer: 2.0- 2.9 fm-1

Motivation for the new experiment at 200 MeV/A

To clarify the nature of spin-orbit coupling in p- 6 He, A_y data at 200 MeV would be valuable (simpler mechanism)

Polarized target operation

Dynamic Nuclear Polarization sequence:

- 1. Laser pulse for pentacene excitation (1 us)
- 2. Transfer polarization from electron to proton systems (30 us)
 - a. Microwave irradiation
 - b. Field sweep (30 us)

Polarization measurement

- Polarization measurement
 - Pulse NMR method (arbitrary units)
 - Normalization with p-⁴He A_y will give absolute value
- Polarization trend
 - Polarization reversal to cancel disbalance of detection efficiency
 - Radiation damage observed

Target crystal. \emptyset 24 mm.

Crystal installed in the target chamber.

A sample of NMR signal from polarized crystal.

p-6He elastic scattering kinematical correlation

Background from quasi-free scattering on ¹²C

QFS background subtraction

(p,⁶He) elastic scattering - clear event selection Data analysis is ongoing...

Summary

- p-6He elastic scattering measurement at 200 MeV/u was carried out
 - Elastic scattering events were extracted with good S/N ratio
 - Background contribution from QFS on ¹²C was removed
- Next step
 - Obtain scattering asymmetry for p-4He elastic scattering
 - Determine absolute polarization of the target
 - Obtain A_y for p-⁶He elastic scattering
 - Clarify relevance of the weakening of spin-orbit coupling to diffused density distribution of ⁶He by comparing experimental results to a microscopic model predictions
- Polarized proton target
 - Valuable tool to explore spin-dependent interactions in experiments with RI-beams
 - Applications of polarized target to (p, 2p) reaction measurement & resonance scattering

Collaborators list

RIKEN, Nishina Center	S. Chebotaryov, N. Chiga, T. Isobe, Y. Kubota, E. Milman, T. Motobayashi, H. Otsu, V. Panin, H. Sakai, M. Sasano, H. Sato, Y. Shimizu, K. Tateishi, T. Uesaka, Z. Yang, K. Yoneda, J. Zenihiro
Kyushu University	S. Sakaguchi, S. Kawase, T. Noro, T. Teranishi, T. Wakasa, J. Yasuda
CNS, University of Tokyo	M. Dozono, S. Ota, L. Stul, M. Takaki
CYRIC, Tohoku University	Y. Matsuda
Beihang University	S. Terashima
IPN Orsay	M. Assie, D. Beaumel, I. Stefan
Kyungpook National University	Y. Ando, W. Kim, A. Ni, S. Park

Miyazaki University	Y. Maeda, K. Taniue
NIRS	T. Wakui
Oak Ridge Natl. Laboratory	A. Galindo-Uribarri, B. Heffron
RCNP, Osaka University	H. Sakaguchi
Tohoku University	T. Akieda, T. Kobayashi, H. Kon, K. Miki, T. Mukai, S. Nakai, K. Sekiguchi, Y. Wada, A. Watanabe
TIT	A. Hirayama, Y. Kondo, T. Nakamura, T. Ozaki, A. Saito, Y. Togano, T. Tomai, H. Yamada, M. Yasuda
University of Hong Kong	S. Leblond, H. Lee, T. Lokotko

Collaboration photo

Backups

Spin-dependent interactions in unstable nuclei

- Spin-dependent interaction
 - o Magicity, binding energy, ...
 - Increasing interest in unstable nuclei
- Change of shell structure due to...
 - Tensor interaction, three nucleon force
 - T. Otsuka et al., Phys. Rev. Lett. 95 (2005) 232502.
 - T. Otsuka et al., Phys. Rev. Lett. 105 (2010) 032501.
 - Spin-orbit interaction
 - J. Dobaczewski et al., Phys. Rev. Lett. 72 (1994) 981.
 - G. A. Lalazissis et al., Phys. Lett. B 418 (1998) 7.
 - B. S. Pudliner et al., Phys. Rev. Lett. 76 (1996) 2416.

Investigating role of spin-dependent interaction in unstable nuclei is essentially important

Spin-orbit coupling in proton-nucleus scattering

- Nuclei with extended neutron distribution
 - Different surfaces for protons and neutrons -> diffuse density distribution
 - Effects of the difference between proton and neutron density distributions are most prominent in nuclei with large neutron/proton ratios
 - How does extended neutron distribution affects spin-orbit coupling?

Vector analyzing power in elastic scattering from unstable nuclei with extended neutron distribution

DNP to produce high proton polarization

- Use of electron polarization
 - Thermal polarization due to Boltzmann distribution
 - Electrons are more easily to polarize

$$P = \tanh(\frac{\gamma \hbar B_0}{2kT})$$

- Dynamic Nuclear Polarization
 - Electrons are firstly polarized
 - Electron polarization is transferred to protons system

Determination of spin-orbit splitting with (p,2p) reaction

Scintillator

Target development for resonant scattering experiments

	High-E	Low-E
Beam energy	> 100 MeV	~ 5 MeV
Target thick.	~ 3 mm	~ 0.1 mm
Target env.	Cooling gas	Vacuum
Target material	Naphthalene p-terphenyl	
Temperature	100 K	300 K

Microwave resonator for new target system for B = 0.2 T.

Picture of a thin target crystal produced with sublimation method.

Upgrade: Target crystal enlargement

- Target size in previous experiments: 14 mm
 - High rate of noise
 events due to beam
 particles not hitting the
 target
 - Loss of statistics

Target size was enlarged to 24 mm.

x [mm]

Enlarged target gives better S/N ratio and higher statistics

Upgrade: New laser

- Larger target size -> larger area
 - Shortage of laser power / volume
 - New target volume ~10 times larger

	Old	New
Wavelength	514 nm	556 nm
Power (pulsed mode)	~1 W	5 W

Photo of optical system of the new laser

Higher intensity laser beam ⇒ higher polarization

Picture of experimental site

Estimation of target absolute polarization

$$P_{proton} = P_{electron} \frac{A}{A + \Gamma} = 25 \pm 2\%$$

• Average polarization: 20% +/- 6%

Buildup time constant (A): 70.27 min

Relaxation time constant (Γ): 206.27 min

Beam particles and scattered fragments tracking

