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Role of spin-dependent interactions in unstable nuclei 

● Change in shell structure of unstable nuclei
○ Magic numbers newly appear or disappear
○ Reduction of spin orbit splitting (Ej=l-½ - E.j=l+½) 

Investigating role of spin-dependent interactions 
in unstable nuclei is essentially important



How to experimentally study spin-dependent interactions

RI-beam species are short lived ⇒ Must be supplied as a beam 

Polarized proton target is required

Pol. p beam

Stable nuclei
Unstable 

nuclei

Pol. p target



How to study spin-dependent interactions
Requirements of RI-beam 
experiments to the target:

Avoid distortion of outgoing 
proton trajectories 

(Ep= 40 - 200 MeV)

- Must work under low 
magnetic field 

- Angular resolution for recoil 

protons must be better than 
1 deg.:

B0 < 0.15 T

B0



Polarized proton targets using DNP technique

- Dynamic Nuclear Polarization
- Electrons are firstly polarized
- Electron polarization is transferred to protons system

- How to obtain high electron polarization
- “Brute force” DNP 

(use electron thermal polarization)

- Triplet DNP
- Electrons optically excited to triplet state

- Spontaneous population difference of triplet 
sublevels

- Weakly dependent on B0

B0 > 1 T
T < 1 K

B 0
 ~ 0.1 T

T > 100 K



Polarized proton target at RIKEN

Recoil protons

Recoil protons

Target material: 
- Naphthalene (C10H8)
- 0.0004% pentacene 

Size: 24 mm ⌀, 1-3 mmt

Mag. field of 0.1 T
Temp.: 100 KT. Wakui et al., NIM A 550 (2005) 521.

T. Uesaka et al., NIM A 526 (2004) 186.



Physics opportunities: 
Spin-orbit coupling in proton-nucleus scattering

- Polarization phenomenon in elastic 
scattering

- Large spin-asymmetry observed in p-4He elastic 
scattering

- O. Chamberlian et al., Phys. Rev. 102 (1956) 
1659.

- Direct evidence of “strong” spin-orbit 
coupling in nuclei

- E. Fermi, Nuovo Climento 10 (1954) 407. 

Extensive studies of spin-orbit potential ⇒
Almost constant depth/diffuseness for stable nuclei



Physics opportunities: 
Spin-orbit coupling in proton-nucleus scattering

Spin-orbit potential:
- Peaks at nuclear surface
- Almost constant for stable nuclei
- What is its shape for unstable 

nuclei with extended density 
distribution?

- Effects of the difference between 
proton and neutron density 
distributions?

Vector analyzing power in elastic scattering from unstable nuclei with 
extended neutron distribution



● Determination of spin-orbit splitting
○ Single-particle states are fragmented due 

to residual interaction
○ (p,2p) reaction 

■ distribution of j> and j< strengths

Physics opportunities:
Change in spin-orbit splitting

Change of spin-orbit splitting can be 
explored with (p,2p)



Physics opportunities:
Resonant scattering

Advantages:
● Excitation function can be scanned with single Ebeam
● High resolution of ECM:   30 - 80 keV
● Large cross section:  10 - 100 mb/sr

What can we add by polarization?
● Clear assignment of j

○ Projectile with non-zero spin
○ Sensitive to configuration mixing

● Disentangle overlapping broad 
resonances

Powerful tool for resonance and particle 
unbound states



p-6He elastic scattering experiment

● Motivation
○ Explore change of spin-orbit coupling in p-A scattering
○ To clarify its relevance to halo structure of 6He

● Overview
○ SAMURAI, RIBF, RIKEN
○ Beam: 500 kpps 6He @ 200 A MeV
○ 5 days in June 2016

● Measurement
○ Measurement of vector analyzing power for p-6He

■ Angular region (CM): 35 - 59 deg. 
■ q transfer: 2.0- 2.9 fm-1 ?



First AY data for p-6,8He at 71 MeV/A



Motivation for the new experiment at 200 MeV/A



Exp. setup - 
target region

p

6He @ 
500 kpps

p

Recoil drift chamber

Plastic + NaI (dE-E)



Exp. setup - 
downstream detectors

SAMURAI

4He

n

6He



Polarized target operation
Dynamic Nuclear Polarization sequence:

1. Laser pulse for pentacene excitation (1 us)
2. Transfer polarization from electron to proton 

systems (30 us)
a. Microwave irradiation 
b. Field sweep (30 us) 

1 2



Polarization measurement
● Polarization measurement 

○ Pulse NMR method (arbitrary units)
■ Normalization with p-4He Ay will give 

absolute value

● Polarization trend 
○ Polarization reversal to cancel 

disbalance of detection efficiency 
○ Radiation damage observed

Crystal installed in the 
target chamber.

A sample of NMR signal from 
polarized crystal.

Target crystal.
⌀ 24 mm.

4He6He



p-6He elastic scattering kinematical correlation

S/N ~ 3.0



Background from quasi-free scattering on 12C 



QFS background subtraction

S/N ~ 9.5

(p,6He) elastic scattering - clear event selection
Data analysis is ongoing... 



Summary
- p-6He elastic scattering measurement at 200 MeV/u was carried out

- Elastic scattering events were extracted with good S/N ratio 
- Background contribution from QFS on 12C was removed

- Next step
- Obtain scattering asymmetry for p-4He elastic scattering

- Determine absolute polarization of the target
- Obtain AY for p-6He elastic scattering

- Clarify relevance of the weakening of spin-orbit coupling to diffused density 

distribution of 6He by comparing experimental results to a microscopic model 
predictions

- Polarized proton target 
- Valuable tool to explore spin-dependent interactions in experiments with RI-beams
- Applications of polarized target to (p, 2p) reaction measurement & resonance scattering 
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Spin-dependent  interactions in unstable nuclei 

● Spin-dependent interaction
○ Magicity, binding energy, ...
○ Increasing interest in unstable nuclei

- Change of shell structure due to...
- Tensor interaction, three nucleon force

- T. Otsuka et al., Phys. Rev. Lett. 95 (2005) 232502.
- T. Otsuka et al., Phys. Rev. Lett. 105 (2010) 032501.

- Spin-orbit interaction
- J. Dobaczewski et al., Phys. Rev. Lett. 72 (1994) 981.
- G. A. Lalazissis et al., Phys. Lett. B 418 (1998) 7.
- B. S. Pudliner et al., Phys. Rev. Lett. 76 (1996) 2416.

Investigating role of spin-dependent interaction 
in unstable nuclei is essentially important



Spin-orbit coupling in proton-nucleus scattering

● Nuclei with extended neutron distribution
○ Different surfaces for protons and neutrons -> diffuse density 

distribution

○ Effects of the difference between proton and neutron density 

distributions are most prominent in nuclei with large 
neutron/proton ratios

○ How does extended neutron distribution affects spin-orbit 
coupling?

Vector analyzing power in elastic scattering from unstable nuclei with 
extended neutron distribution



DNP to produce high proton polarization

- Use of electron polarization
- Thermal polarization due to Boltzmann 

distribution

- Electrons are more easily to 
polarize

- Dynamic Nuclear Polarization
- Electrons are firstly polarized

- Electron polarization is transferred to 
protons system



Determination of spin-orbit splitting with (p,2p) reaction

SHARAQ spectrometer



Target development for resonant scattering experiments

High-E Low-E

Beam energy > 100 MeV ~ 5 MeV

Target thick. ~ 3 mm ~ 0.1 mm

Target env. Cooling gas Vacuum

Target 
material

Naphthalene p-terphenyl

Temperature 100 K 300 K

Picture of a thin target crystal produced with 
sublimation method.

Microwave resonator for new target system 
for B = 0.2 T.



Upgrade: Target crystal enlargement 
⌀ 24 mm⌀ 14 mm

● Target size in previous 
experiments: 14 mm

○ High rate of noise 
events due to beam 
particles not hitting the 
target

○ Loss of statistics  

Target size was 
enlarged to 24 mm.

Enlarged target gives better S/N ratio and higher statistics



Upgrade: New laser 
● Larger target size -> larger area

○ Shortage of laser power / volume
○ New target volume ~10 times larger

Old New

Wavelength 514 nm 556 nm

Power (pulsed mode) ~1 W 5 W

Photo of optical system of the new laser

Old 
(514 nm)

New 
(556 nm)

Higher intensity laser beam ⇒ 
higher polarization



Picture of experimental site



Estimation of target absolute polarization

•

Relaxation time constant (ᵁ): 206.27 minBuildup time constant (ᴿ): 70.27 min



Beam particles and scattered fragments tracking

6He

4He

2H, 3H


