

TECHNISCHE UNIVERSITÄT DARMSTADT

Observation of the competitive double-gamma nuclear decay

Heiko Scheit

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

Introduction

Emission of Electromagnetic Radiation One and Two Photon(s)

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

• single photon emission

$$E_0 = E_1 = \hbar \omega_1$$

Emission of Electromagnetic Radiation One and Two Photon(s)

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

• single photon emission

$$E_0 = E_1 = \hbar \omega_1$$

 double-gamma decay: two photons emitted simultaneously

$$E_0 = E_1 + E_2$$

$$|i\rangle$$
 $\xrightarrow{2\gamma}$ E_0 \vec{k}_1 \vec{k}_2 \vec{k}_2 \vec{k}_2 \vec{k}_2 \vec{k}_2 \vec{k}_3 \vec{k}_4 \vec{k}_5 \vec{k}_7 \vec{k}_8

Emission of Electromagnetic Radiation One and Two Photon(s)

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

• single photon emission

$$E_0 = E_1 = \hbar \omega_1$$

 double-gamma decay: two photons emitted simultaneously

$$E_0 = E_1 + E_2$$

Similar: Positronium Decay into 2,3,4... Photons

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay Experiment

Results

Summary

bound system of an electron and a positron

Similar: Positronium Decay into 2,3,4... Photons

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

bound system of an electron and a positron

- ullet decay into N_{γ} photons
 - due to momentum conservation: $N_{\gamma} \geqslant 2$
 - due to charge conjugation parity
 - para-Ps (S=0): $N_{\gamma}=2,4,\ldots$ (for $N_{\gamma}=1$: well known back-to-back **511 keV** γ rays)
 - ortho-Ps (S=1): $N_{\gamma}=3,5,\ldots$ (three photons in lowest order)

Decay Width First Order Perturbation Theory

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

interaction of a nucleus with the free EM radiation field:

$$H_{\mathrm{int}} = -\frac{1}{c} \int \vec{j}_{\mathrm{N}}(\vec{r}, t) \vec{A}(\vec{r}, t) d^3r$$

• Fermi's Golden Rule

$$\Gamma_{\gamma} = 2\pi \left| \langle f | H_{\rm int} | i \rangle \right|^2 \rho_f$$

Decay Width First Order Perturbation Theory

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

interaction of a nucleus with the free EM radiation field:

$$H_{\mathrm{int}} = -\frac{1}{c} \int \vec{j}_{\mathrm{N}}(\vec{r}, t) \vec{A}(\vec{r}, t) d^3r$$

• Fermi's Golden Rule

$$\Gamma_{\gamma} = 2\pi \left| \langle f | H_{\rm int} | i \rangle \right|^2 \rho_f$$

 ho_f : density of final states; H_{int} : interaction Hamiltonian $\vec{j}_{\mathrm{N}}(\vec{r},t)$: nucl. current density; $\vec{A}(\vec{r},t)$: EM vector potential

Second Order

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

Second Order

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

<u>Summary</u>

- a,b) resonance amplitudes (second order in $\vec{j} \cdot \vec{A}$ interaction)
 - sum over all intermediate states $|n\rangle$
 - usual selection rules apply at each vertex
- c) seagull amplitude: first order, but quadratic in the radiation field A^2
- theory is fully developed
- J. Kramp,... D. Schwalm et al., NPA 474, 412 (1987)

Historical Detour

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

 first discussed in doctoral thesis (1930) of Maria Göppert-Mayer

> Über Elementarakte mit zwei Quantensprüngen Von Maria Göppert-Mayer (Göttinger Dissertation)

Historical Detour

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma \gamma / \gamma$ -Decay

Experiment

Results

Summary

 first discussed in doctoral thesis (1930) of Maria Göppert-Mayer

> Über Elementarakte mit zwei Quantensprüngen Von Maria Göppert-Mayer (Göttinger Dissertation)

 not only two-photon emission, but also absoption and Raman scattering

- used routinely in atomic physics
- (later MGM also predicted double β-decay)

Double-Gamma Decay in Nuclei

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma ext{-Decay}$

Experiment

Results

Summary

first unambiguous observation in ⁴⁰Ca and ⁹⁰Zr

VOLUME 53, NUMBER 20 PHYSICAL REVIEW LETTERS

12 NOVEMBER 1984

Double Gamma Decay in ⁴⁰Ca and ⁹⁰Zr

J. Schirmer, D. Habs, R. Kroth, N. Kwong, D. Schwalm, and M. Zirnbauer

Max-Planck-Institut für Kernphysik and Physikalisches Institut der Universität Heidelberg,

D-6900 Heidelberg, Federal Republic of Germany

 HD-DA Crystal ball (4π; 162 Nal(Tl))

Double-Gamma Decay in Nuclei

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma ext{-Decay}$

Experiment

Results

Summary

first unambiguous observation in ⁴⁰Ca and ⁹⁰Zr

VOLUME 53, NUMBER 20 PHYSICAL REVIEW LETTERS

12 NOVEMBER 1984

Double Gamma Decay in ⁴⁰Ca and ⁹⁰Zr

J. Schirmer, D. Habs, R. Kroth, N. Kwong, D. Schwalm, and M. Zirnbauer

Max-Planck-Institut für Kernphysik and Physikalisches Institut der Universität Heidelberg,

D-6900 Heidelberg, Federal Republic of Germany

- HD-DA Crystal ball (4π; 162 Nal(Tl))
- same group: 160
- common to all: $0^+ \rightarrow 0^+_{\rm gs}$ transitions

Double-Gamma Decay in Nuclei

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

first unambiguous observation in ⁴⁰Ca and ⁹⁰Zr

VOLUME 53, NUMBER 20 PHYSICAL REVIEW LETTERS

12 NOVEMBER 1984

Double Gamma Decay in ⁴⁰Ca and ⁹⁰Zr

J. Schirmer, D. Habs, R. Kroth, N. Kwong, D. Schwalm, and M. Zirnbauer

Max-Planck-Institut für Kernphysik and Physikalisches Institut der Universität Heidelberg,

D-6900 Heidelberg, Federal Republic of Germany

- HD-DA Crystal ball (4π; 162 Nal(Tl))
- same group: 160
- common to all: $0^+ \rightarrow 0^+_{\rm gs}$ transitions

single photon decay strictly forbidden

J. Kramp,... D. Schwalm et al., NPA 474, 412 (1987)

Competitive Double-Photon Decay: $\gamma\gamma/\gamma$

Introduction

EM radiation

Positronium

Decay rate

Second Order

Historical Detour

 $\gamma\gamma$ -decay

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

• for $0^+ \rightarrow 0^+$ transitions:

- single photon decay strictly forbidden
- $\Gamma_{\gamma\gamma}/\Gamma \sim 10^{-4}$
- $\Gamma \approx \Gamma_{\rm IP}$ (internal pair production)
- Competitive Double-gamma decay $(\gamma \gamma / \gamma)$
 - $\gamma\gamma$ decay competing with allowed single gamma decay
 - $\Gamma \approx \Gamma_{\gamma}$
 - $\Gamma_{\gamma\gamma}/\Gamma_{\gamma} \ll 10^{-4}$
 - has never been observed, despite a few searches in last 30 years

Introduction

Experiment

Signatures

Obstacles

LaBr3 Detectors

GALATEA

Experimental Setup

137Cs

Results

Summary

Experiment

Introduction

Experiment

Signatures
Obstacles
LaBr3 Detectors
GALATEA
Experimental Setup
137Cs
Results
Summary

• two photons emitted **simultaneously**

Introduction

Experiment

Signatures
Obstacles
LaBr3 Detectors
GALATEA
Experimental Setup
137Cs
Results
Summary

 two photons emitted simultaneously with continuous energy spectrum

Introduction

Experiment

Signatures

Obstacles

LaBr3 Detectors

GALATEA

Experimental Setup

137Cs

Results

Summary

 two photons emitted simultaneously with continuous energy spectrum

• but energy is conserved:

$$E_0 = E_1 + E_2$$

Introduction

Experiment

Signatures

Obstacles
LaBr3 Detectors
GALATEA
Experimental Setup

Experimental Setup

Results

Summary

- two photons emitted simultaneously with continuous energy spectrum
- but energy is conserved:

$$E_0 = E_1 + E_2$$

 E_0 : transition energy; $E_{1/2}$: energies of two photons

Experimental Obstacle(s) for the Competitive Double-Gamma Decay

Introduction	
Experiment	
Signatures	
Obstacles	ı
LaBr3 Detectors	
GALATEA	
Experimental Setup	
137Cs	
Results	
Summary	

• very small branching ratio $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}\ll 10^{-4}$

Experimental Obstacle(s) for the Competitive Double-Gamma Decay

Introduction

Experiment

Signatures

Obstacles

LaBr3 Detectors
GALATEA
Experimental Setup

137Cs Results

Summary

• very small branching ratio $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}\ll 10^{-4}$

- Compton scattering energy of single γ ray deposited in two detectors
 - exact same signature for energy sum

$$E_0 = E_1 + E_2$$

but:

- different energy distribution
- different path of photons: shielding

Experimental Obstacle(s) for the Competitive Double-Gamma Decay

Introduction

Experiment

Signatures

Obstacles

LaBr3 Detectors
GALATEA
Experimental Setup

137Cs Results

Summary

• very small branching ratio $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}\ll 10^{-4}$

- Compton scattering energy of single γ ray deposited in two detectors
 - exact same signature for energy sum

$$E_0 = E_1 + E_2$$

but:

- different energy distribution
- different path of photons: shielding
- almost same timing ($\Delta t \sim 1$ ns) but:
 - $\Delta t \neq 0$
- no problem for $0^+ \rightarrow 0^+$

Recent Experimental Advance: LaBr₃(Ce) Detectors

Introduction

Experiment

Signatures

Obstacles

LaBr3 Detectors

GALATEA

Experimental Setup

137Cs

Results

Summary

• so far: NaI(TI) detectors

- standard detector, if high efficiency is crucial
- but: poor time and energy resolution

Heidelberg-Darmstadt Crystal- ball full solid angle 4π 162 Nal(TI) detectors

Recent Experimental Advance: LaBr₃(Ce) Detectors

Introduction

Experiment

Signatures

Obstacles

LaBr3 Detectors

GALATEA

Experimental Setup 137Cs

Results

Summary

so far: NaI(TI) detectors

- standard detector, if high efficiency is crucial
- but: poor time and energy resolution

Heidelberg-Darmstadt
Crystal- ball
full solid angle 4π 162 NaI(TI) detectors

- large volume LaBr₃(Ce) detectors available:
 - better energy resolution by a factor 2–3
 - better time resolution by a factor 5–10
 - very fast → high rate measurements

GALATEA array 18 LaBr₃(Ce) detectors ($3" \times 3"$)

Introduction

Experiment

Signatures

Obstacles

LaBr3 Detectors

GALATEA

Experimental Setup

137Cs

Results

Summary

Experimental Setup

- 5 LaBr₃(Ce) detectors
- 72°: 5 detector pairs
- 144°: 5 detector pairs
- $\epsilon_{FE}(662 \text{ keV}) = 1.5\%$
- \bullet $\epsilon_{\gamma\gamma} \approx 4 \cdot 10^{-4}$
- $\Delta E=3\%$ (FWHM)
- ullet $\Delta t=1~{
 m ns}~{
 m (FWHM)}$
- on disk: 53 days
- source: ¹³⁷Cs (600 kBq)
- thick Pb blocks between detectors

Source of (two-)photons: ¹³⁷Cs (gamma calibration standard)

Introduction	
Experiment	
Signatures	
Obstacles	
LaBr3 Detectors	
GALATEA	
Experimental Setup	
137Cs	
Results	
Summary	
Jannar j	

 \bullet 11/2⁻ \rightarrow 3/2⁺ transition of ¹³⁷Ba (M4)

Introduction

Experiment

Results

Subtracted Energy

Compton excluded?

Compton excluded? (2)

Other Observables

Transition ME

Fit result

QPM

Summary

Results

Results Random subtracted energy spectra

Results Random subtracted energy spectra

Results Random subtracted energy spectra

observation of the competitive double-gamma decay very pronounced angular correlation

Compton Scattering excluded?

Introduction

Experiment

Results

Subtracted Energy

Compton excluded?

Compton excluded? (2)

Other Observables

Transition ME

Fit result

QPM

Summary

Compton Scattering excluded?

Introduction

Experiment

Results

Subtracted Energy

Compton excluded?

Compton excluded? (2)

Other Observables

Transition ME

Fit result

QPM

Summary

Compton Scattering excluded?

Introduction

Experiment

Results

Subtracted Energy

Compton excluded?

Compton excluded? (2)

Other Observables

Transition ME

Fit result

QPM

Summary

support structure

Compton scattering should be visible in time spectrum

Compton Scattering excluded? (2)

data are not compatible with Compton scattering

Other Observables

Introduction

Experiment

Results

Subtracted Energy

Compton excluded?

Compton excluded? (2)

Other Observables

Transition ME

Fit result

QPM

Summary

energy spectra of individual gamma rays

angular correlation

Transition Matrix Elements Transition Polarizabilities α

Introduction

Experiment

Results

Subtracted Energy

Compton excluded?

Compton excluded? (2)

Other Observables

Transition ME

Fit result

QPM

Summary

 $|f\rangle$ \mathbb{E}^{2} $|n\rangle$ \mathbb{M}^{2} $|i\rangle$

Transition Matrix Elements Transition Polarizabilities α

Introduction

Experiment

Results

Subtracted Energy

Compton excluded?

Compton excluded? (2)

Other Observables

Transition ME

Fit result

QPM

Summary

 $|f\rangle$ $|f\rangle$ $|i\rangle$ $|i\rangle$ $|i\rangle$ $|i\rangle$

?
$$\frac{^{137}Ba}{}$$
 7/2+

$$\alpha_{E2M2} \propto \sum_{m} \frac{\langle \frac{3}{2}_{gs}^{+} || \mathbf{E2} || \frac{7}{2}_{n}^{+} \rangle \langle \frac{7}{2}_{n}^{+} || \mathbf{M2} || \frac{11}{2}^{-} \rangle}{E_{n}}$$

 $\alpha_{S'L'SL}$ can be

- obtained from theory (e.g. shell model, QPM)
- fit parameter

Fit result

$$\frac{\mathrm{d}\Gamma_{\gamma\gamma}^2}{\mathrm{d}\omega\mathrm{d}\theta} = A_{qq}(\alpha_{E2M2}^2) + A_{od}(\alpha_{M1E3}^2) + A_x(\alpha_{E2M2} \cdot \alpha_{M1E3})$$

- ullet only the dominant $lpha_{E2M2}$ and $lpha_{M1E3}$ considered in simultaneous fit
- A_{qq} , A_{od} and A_x exhibit characteristic dependence on ω and θ

Quasi-particle phonon model

	Ехр.	QPM
$\Gamma_{\gamma\gamma}/\Gamma_{\gamma}(10^{-6})$	2.05(31)	2.69
$lpha_{ m M2E2}(rac{e^2{ m fm}^4}{ m MeV})$	+33.9(28)	+42.60
$\alpha_{\rm E3M1}(\frac{e^2{\rm fm}^4}{{ m MeV}})$	+10.1(42)	+9.50

- ullet $\alpha_{
 m M2E2}$ dominates
- ullet relative sign between $lpha_{
 m E2M2}$ and $lpha_{
 m M1E3}$ is positive
- good description by the QPM (V. Yu. Ponomarev)

C. Walz, HS et al., **Nature 526**, 406 (2015) + supplement

ntroduction	
Experiment	
Results	
Summary	
Summary	

Summary

Summary and Outlook

Introduction	
Experiment	
Results	
Summary	
Summary	

Observation of the competitive double-gamma decay

$$\Gamma_{\gamma\gamma}/\Gamma_{\gamma} = 2.05(31) \cdot 10^{-6}$$

- well described by QPM
- first step to a systematic study of transition polarizabilites
- ullet search for cases dominated by E1E1 transitions with improved experimental setup
- competition: D.J. Millener, R.J. Sutter (NaI(TI))
 C.J. Lister (Gammasphere)
- Collaborators
 - Christopher Walz (setup, data taking, data analysis)
 - N. Pietralla, T. Aumann, R. Lefol, V. Yu. Ponomarev (QPM)

Introduction

Experiment

Results

Summary

QPM running sum Time and Energy Single Energy Angular correlation Polarizability

The End

QPM running sum

Introduction

Experiment

Results

Summary

QPM running sum

Time and Energy Single Energy Angular correlation Polarizability

Time and Energy Spectra

Time and Energy Spectra

Time and Energy Spectra

• random coincidences dominant

Other Observables Indvidual Energies

Introduction

Experiment

Results

Summary

QPM running sum Time and Energy Single Energy

Angular correlation Polarizability

- ullet transitions of multipolarities λ_1 and λ_2
- lacktriangle like two individual γ transitions: $\Gamma_{\gamma\gamma}\propto E_1^{2\lambda_1+1}E_2^{2\lambda_2+1}$

• E2M2: $E_1^5 E_2^5$

Other Observables Indvidual Energies

Introduction

Experiment

Results

Summary

QPM running sum Time and Energy Single Energy Angular correlation

Polarizability

ullet transitions of multipolarities λ_1 and λ_2

• like two individual γ transitions: $\Gamma_{\gamma\gamma} \propto E_1^{2\lambda_1+1} E_2^{2\lambda_2+1}$

• E2M2: $E_1^5 E_2^5$

• E3M1: $E_1^7 E_2^3 + E_1^3 E_2^7$

Non-symmetric Angular Correlation (about 90°)

Introduction	
Experiment	
Results	
Summary	

QPM running sum
Time and Energy
Single Energy
Angular correlation
Polarizability

- single gamma decay: symmetric about 90° (e.g. 2 γ rays of γ -cascade)
- $\gamma\gamma$ decay: non-symmetric angular correlation

Non-symmetric Angular Correlation (about 90°)

Introduction

Experiment

Results

Summary

QPM running sum
Time and Energy
Single Energy
Angular correlation
Polarizability

- single gamma decay: symmetric about 90° (e.g. 2 γ rays of γ -cascade)
- $\gamma\gamma$ decay: **non-symmetric** angular correlation
- 137 Ba: $11/2^- \rightarrow 3/2^+$: change of parity: one interaction must be M and one must be E

• interference of M2 and E2

Polarizability

Introduction

Experiment

Results

Summary

QPM running sum Time and Energy Single Energy Angular correlation Polarizability • α_D : diagonal polarizability

$$\alpha_D \propto \sum_n \frac{B(E1; 0^+ \to 1_n^-)}{E_n}$$

Polarizability

Introduction

Experiment

Results

Summary

QPM running sum Time and Energy Single Energy Angular correlation Polarizability • α_D : diagonal polarizability

$$\alpha_D \propto \sum_n \frac{B(E1; 0^+ \to 1_n^-)}{E_n}$$

$$\alpha_D \propto \sum_{n} \frac{\langle 0_{\rm gs}^+ || E1 || 1_{\rm n}^- \rangle \langle 1_n^- || E1 || 0_{\rm gs}^+ \rangle}{E_n}$$

Polarizability

Introduction

Experiment

Results

Summary

QPM running sum Time and Energy Single Energy Angular correlation Polarizability • α_D : diagonal polarizability

$$\alpha_D \propto \sum_{n} \frac{B(E1; 0^+ \to 1_n^-)}{E_n}$$

$$\alpha_D \propto \sum_{n} \frac{\langle 0_{gs}^+ || E1 || 1_n^- \rangle \langle 1_n^- || E1 || 0_{gs}^+ \rangle}{E_n}$$

$$\alpha_{fi} \propto \sum_{n} \frac{\langle 0_{gs}^+ || E1 || 1_n^- \rangle \langle 1_n^- || E1 || 2_1^+ \rangle}{E_n}$$

- α_{fi} : off-diagonal or transition polarizability
 - determined from single number: $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}$
- α_D : full E1-strength must be measured (difficult)
- ullet relation between α_D and α_{fi} not established