Timelike Compton Scattering and J/ ψ photoproduction at JLab 12 GeV

Pawel Nadel-Turonski

Jefferson Lab Stony Brook University

SPIN 2016, UISC, September 27, 2016

Outline

Introduction to Timelike Compton Scattering

Approved JLab 12 GeV TCS experiments

• CLAS experiment E12-12-001

Also first measurement of J/ψ near threshold and search for LHCb pentaquark

• SoLID experiment E12-12-006A

Future TCS measurements at JLab 12 GeV

Partons in the nucleon

Elastic form factors

Transverse spatial distributions (Naively Fourier transform of Q² or t)

Parton Distribution Functions Longitudinal momentum distributions

Generalized Parton Distributions

A unified descriptions of partons (quarks and gluons) in momentum and impact parameter space

Generalized Parton Distributions (GPDs)

Experimental Kinematics

- GPDs are measured in exclusive processes
- Q^2 is the momentum transfer *from* the electron
- *t* is the momentum transfer *to* the nucleon
- 2ξ is the difference between initial and final momentum of the struck parton

Elastic Form Factors

$$\int_{-1}^{1} dx H(x,\xi,t) = F_{1}(t) \quad \int_{-1}^{1} dx \tilde{H}(x,\xi,t) = g_{A}(t)$$
$$\int_{-1}^{1} dx E(x,\xi,t) = F_{2}(t) \quad \int_{-1}^{1} dx \tilde{E}(x,\xi,t) = h_{A}(t)$$

Parton Distribution Functions (PDFs)

$$H(x, \xi=0, t=0) = q(x) H(x, \xi=0, t=0) = \Delta q(x)$$

E, E don't appear in DIS (*nucleon helicity flip*)

Probing GPDs through Compton scattering

Timelike Compton Scattering (TCS)

Timelike-spacelike correspondence and the universality of GPDs

• Of fundamental importance for the GPD program

Real (and imaginary) part of Compton amplitude

- Straightforward access through azimuthal asymmetry of lepton pair
- Input for fits of Compton Form Factors

Deep Inelastic Scattering (DIS) and Drell-Yan

- The spacelike DIS and timelike Drell-Yan processes both factorize into a partonic cross section and a Parton Distribution Function (PDF)
 - Measurements of both demonstrated the universality of PDFs

DVCS and TCS

(spacelike) Deeply Virtual Compton Scattering

- In DVCS there is a similar factorization at the amplitude level into a partonic amplitude and a Generalized Parton Distribution (GPD)
 - Measuring both spacelike DVCS and Timelike Compton Scattering (TCS) can test the universality of GPDs

Real part at large x important for GPD models

τ and η are the TCS equivalents of Bjorken *x* and the skewness ξ respectively $Q'^2 = M^2_{e+e}$ is the timelike virtuality of the outgoing photon (→ hard scale)

TCS kinematics

- $k,k' = momentum of e^{-}, e^{+}$
- θ = angle between the scattered proton and the electron
- ϕ = angle between lepton scattering- and reaction planes

$$\frac{d\sigma_{BH}}{dQ'^2 dt d\cos\theta} \approx 2\alpha^3 \frac{1}{-tQ'^4} \frac{1+\cos^2\theta}{1-\cos^2\theta} \left(F_1(t)^2 - \frac{t}{4M_p^2} F_2(t)^2\right)$$

• For θ close to 0 and π , BH becomes large. A cut is usually applied.

TCS-BH interference

- Under lepton charge conjugation:
 - Compton and BH amplitudes are *even*
 - Interference term is *odd*

Easy to project out *only* the interference term

- Direct access to interference term through angular distribution of the lepton pair
 - cosine and sine moments

TCS cross section and the interference term

$$\frac{d\sigma_{TCS}}{dQ'^2 d\Omega dt} \approx \frac{\alpha^3}{8\pi} \frac{1}{s^2} \frac{1}{Q'^2} \left(\frac{1+\cos^2\theta}{4}\right) 2(1-\xi^2) \left|\mathcal{H}(\xi,t)\right|^2$$

$$\frac{d\sigma_{INT}}{dQ'^2 dt d\cos\theta \, d\varphi} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \underbrace{\cos\varphi}_{\sin\theta}^{1+\cos^2\theta} \underbrace{\operatorname{Re}\tilde{M}^{--}}_{\sin\theta}$$

$$\tilde{M}^{--} \approx \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1(t) \mathcal{H}(\xi, t) \right]$$

$$\mathcal{H}(\xi,t) = \sum_{q} e_q^2 \int_{-1}^{1} dx \Big(\frac{1}{\xi - x + i\epsilon} - \frac{1}{\xi + x + i\epsilon} \Big) H^q(x,\xi,t)$$

First measurements at 6 GeV

• Cosine moment of weighted cross sections

$$\frac{dS}{dQ^2 dt \, d\,\varphi} = \int \frac{L(\theta, \varphi)}{L_0(\theta)} \frac{d\,\sigma}{dQ^2 dt \, d\,\varphi \, d\,\theta} \, d\,\theta$$
$$R = \frac{2\int_0^{2\pi} d\,\varphi \cos\varphi \frac{dS}{dQ^2 dt \, d\,\varphi}}{\int_0^{2\pi} d\,\varphi \frac{dS}{dQ^2 dt \, d\,\varphi}}$$

- Numerator is proportional to M --
 - $-\cos \varphi$ part of interference term
- R can be compared directly with GPD models

Comparison of results by R. Paremuzyan *et al* from e1-6/e1f with calculations by V. Guzey.

Imaginary part accessed through circular polarization

To leading order, in terms of helicity amplitudes:

$$\begin{aligned} \frac{d\sigma_{INT}}{dQ'^2 dt \, d(\cos \theta) \, d\varphi} &= -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \left[\cos \varphi \frac{1+\cos^2 \theta}{\sin \theta} \operatorname{Re} \tilde{M}^{-1} \right] \\ &- \cos 2\varphi \sqrt{2} \cos \left(\operatorname{Re} \tilde{M}^{0-1} - \cos 3\varphi \sin \theta \operatorname{Re} \tilde{M}^{+-1} + O\left(\frac{1}{Q'}\right) \right], \\ &= \frac{\nu q^3_{em}}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \left[\sin \varphi \frac{1+\cos^2 \theta}{\sin \theta} \operatorname{Im} \tilde{M}^{-1} \right] \\ &- \sin 2\varphi \sqrt{2} \cos \theta \operatorname{Im} \tilde{M}^{0-1} \right] \sin 3\varphi \sin \theta \operatorname{Im} \tilde{M}^{+-1} + O\left(\frac{1}{Q'}\right) \\ &= (1-\eta^2) \left(\left[\mathcal{H}_1 \right]^2 + \left[\mathcal{H}_1 \right]^2 \right] - 2\eta^2 \operatorname{Re} \left(\mathcal{H}_1^* \mathcal{E}_1 + \left(\mathcal{H}_1^* \mathcal{E}_1 \right) \right) \\ &- \left(\eta^2 + \frac{t}{4M^2} \right) \left(\mathcal{E}_1 \right)^2 - \eta^2 \frac{t}{4M^2} \left(\mathcal{E}_1 \right)^2 \right). \end{aligned}$$

The D-term and the pressure balance in the nucleon

• The D-term contributes only to the real part of the Compton amplitude

From 6 to 12 GeV

- 6 GeV kinematics are limited to $M_{e+e} < 2$ GeV.
- 12 GeV extends this mass (Q') range up to 3 GeV
- 6 GeV data were important for developing methods
- 12 GeV will provide
 - Larger reach in s and $Q^{\prime 2}$
 - Higher luminosity and more statistics for multi-dimensional binning
 - A possibility to avoid meson resonances in the e^+e^- final state
 - Data can be taken in the resonance-free region between the ρ' and J/Ψ

TCS and J/ ψ photoproduction with CLAS12 in Hall B

Approved CLAS12 experiments

	Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Run Group	Target
	E12-06-108	Hard exclusive electro-production of π^{q},η	Stoler	В	80		RICH (1 sector)			liquid
	E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	A	60		Forward tagger			H ₂
	E12-06-119	Deeply Virtual Compton Scattering	Sabatie	A	80					
- 1	E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40					
1	E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	A-	119	139		11	F. Sabatie	
\triangleleft	E12-12-001	Timelike Compton Scatt. & J/ψ production in e+e-	Nadel-Turonski	A-	120					
	E12-12-007	Exclusive ϕ meson electroproduction with CLAS12	Stoler, Weiss	B+	60					
	PR12-12-008	Photoproduction of the very strangest baryon	Guo	-	80					
	E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30		Neutron			liquid
	PR12-11-109 (a)	Dihadron DIS production	Avakian		•	90	RICH (1 sector)	11	в	D ₂ target
	E12-09-007a	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	56		Forward tagger		K. Halidi	
1	E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	TBA					
	E12-11-003	DVCS on neutron target	Niccolai	A	90					
	E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	A	80	170	Polarized target RICH (1 sector) Forward tagger	11		NH
	E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	A	120					ND3
	E12-07-107	Spin-Orbit Correl, with Longitudinally polarized target	Avakian	A-	103				С	
	PR12-11-109 (b)	Dihadron studies on long, polarized target	Avakian						S. Kuhn	
	E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A-	110					
	E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103					
	E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60		- 11	D	Nuclear
	E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	E	Nuclear
	E12-10-102	Fine Neutron structure at large x	Bueltman	A	40	40	Radial TPC	11	F	Gas D ₂
	TOTAL approved run time (PAC days)				1491	559				

E12-12-001

Approved for 100 PAC days as part of Run Group A, plus an additional 20 days with reverse torus polarity $\begin{array}{c} \mbox{Jefferson Lab PAC 39 Proposal}\\ \mbox{Timelike Compton Scattering and } J/\psi \mbox{ photoproduction on the proton}\\ \mbox{in } e^+e^- \mbox{ pair production with CLAS12 at 11 GeV} \end{array}$

I. Albayrak,¹ V. Burkert,² E. Chudakov,² N. Dashyan,³ C. Desnault,⁴ N. Gevorgyan,³ Y. Ghandilyan,³ B. Guegan,⁴ M. Guidal^{*},⁴ V. Guzey,^{2,5} K. Hicks,⁶ T. Horn^{*},¹ C. Hyde,⁷ Y. Ilieva,⁸ H.-S. Jo,⁴ P. Khetarpal,⁹ F.J. Klein,¹ V. Kubarovsky,² A. Marti,⁴ C. Munoz Camacho,⁴ P. Nadel-Turonski^{*†},² S. Niccolai,⁴ R. Paremuzyan^{*},^{4,3} B. Pire,¹⁰ F. Sabatié,¹¹ C. Salgado,¹² P. Schweitzer,¹³ A. Simonyan,³ D. Sokhan,⁴ S. Stepanyan^{*},² L. Szymanowski,¹⁴ H. Voskanyan,³ E. Voutier,¹⁵ J. Wagner,¹⁴ C. Weiss,² N. Zachariou,⁸ and the CLAS Collaboration. ¹Catholic University of America, Washington, D.C. 20064 ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ³Yerevan Physics Institute, 375036 Yerevan, Armenia ⁴Institut de Physique Nucleaire d'Orsay, IN2P3, BP 1, 91406 Orsay, France ⁵Hampton University, Hampton, Virginia 23668 ⁶Ohio University, Athens, Ohio 45701 ⁷Old Dominion University, Norfolk, Virginia 23529 ⁸University of South Carolina, Columbia, South Carolina 29208 ⁹Florida International University, Miami, Florida 33199 ¹⁰CPhT, École Polytechnique, 91128 Palaiseau, France ¹¹CEA. Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France ¹²Norfolk State University, Norfolk, Virginia 23504 ¹³University of Connecticut, Storrs, Connecticut 06269 ¹⁴National Center for Nuclear Research (NCBJ), Warsaw, Poland ¹⁵LPSC Grenoble, 38000 Grenoble, France (Dated: May 4, 2012)

*Co-spokesperson

[†]Contact person: turonski@jlab.org

The CLAS12 detector

CLAS12 parameters (at max torus field)

Parameters	Forward Detector	Central Detector			
Charged tracks:					
polar angular range (θ)	5° to 35°	35° to 125°			
resolution:					
polar angle $(\delta \theta)$	< 1 mr	$<10~{\rm mr}$ to 20 ${\rm mr}$			
azimuthal angle $(\delta \phi)$	< 4 mr	< 5 mr			
momentum $(\delta p/p)$	<1% at 5 GeV/c	< 5% at 1.5 GeV/c			
Neutral particles:					
angular range (θ)	5° to 40°	40° to 125° (neutrons)			
angular resolution $(\delta \theta)$	< 4 mr	< 10 mr			
Energy resolution	$< 0.1/\sqrt{(E)}$	< 5%			
PID:					
e/π	full momentum range	NA			
π/p	full momentum range	$< 1.25 \ {\rm GeV/c}$			
K/π	$< 3 \ {\rm GeV/c}$	$< 0.65 { m ~GeV/c}$			
K/p	< 4 GeV/c	< 1 GeV/c			

Luminosity: 10³⁵ cm⁻²s⁻¹

Exclusive quasi-real photoproduction in CLAS12

- Low-Q² events are reconstructed by applying cuts on the transverse momentum of the missing beam electron.
- Exclusivity is ensured by detection of all produced final-state particles, and application of an additional missing mass cut.

Exclusive quasi-real photoproduction in CLAS (data)

Detection of the exclusive final state in CLAS12

 10^{2}

10

D

CLAS12 acceptance for pe⁺e⁻ final states

• CLAS12 has good acceptance for exclusive photoproduction of lepton pairs with a large invariant mass over a wide range of photon energies.

Acceptance in the TCS angles θ_{CM} and ϕ_{CM}

s = 17.5 GeV to 19.5 GeV

Generated events. Regions dominated by BH fall outside of the contour indicating the CLAS acceptance.

Accepted events for four t-bins. The observable R' is integrated over the CLAS acceptance

Projected results - cosine moment R'

- Uncertainties for R', integrated over the CLAS12 acceptance, for two bins in photon energy, for the lowest Q'^2 bin above the ρ' resonance.
- Different values of the D-term are only shown for the double distribution

J/ψ photoproduction near threshold

J/ψ production at high W

- Access to nucleon's gluon GPD at small *x*
 - t_{min} and ζ small, well understood diffractive process
 - Measurements at EIC, HERA, COMPASS, FNAL

J/ψ production near threshold

- t_{min} and ζ large, implies large skewness $x_1 x_2$
- Natural interpretation in terms of a gluonic form factor sensitive to non-perturbative gluon field
 - analogous to high-*t* elastic *eN* scattering
- Amplitude constant, but cross section near threshold suppressed by large t_{min} Weiss, Strikman

 $A(\gamma + p \to J/\psi + p) \propto F_{2q}(t)$ gluonic form factor 28

Projected results – exclusive J/ψ photoproduction

Uncertainties for the total cross section assuming the most conservative prediction (smaller than point side except for the three lowest points) t-dependence in narrow bins of *s* for a total cross section given by the lower curve on the left

Enhancement instead of suppression near threshold?

• Cornell: should we expect an enhancement instead, despite the impact of a large t_{min}?

• LHCb charmonium pentaquark? Can be photoproduced in the schannel with 10 GeV photons!

Comparable statistics!

CLAS12 provides excellent mass resolution

• Mass resolution of the detected p-J/ ψ system (charmonium pentaquark)

J/ψ from nuclear targets in CLAS12

Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Run Group	Target
E12-06-108	Hard exclusive electro-production of π^{0},η	Stoler	В	80		RICH (1 sector)			liquid
E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	A	60		Forward tagger			H ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	А	80]				
E12-09-003	Excitation of nucleon resonances at high Q ²	Gothe	B+	40					
E12-11-005	Hadron spectroscopy with forward tagger	Bettaglieri	A-	119	139		11	P. Sabatie	
E12-12-001	Timelike Compton Scatt. & J/ψ production in e+e-	Nadel-Turonski	A-	120]				
E12-12-007	Exclusive ϕ meson electroproduction with CLAS12	Stoler, Weiss	B+	60]				
PR12-12-008	Photoproduction of the very strangest baryon	Guo	-	80					$\langle \ \rangle$
E12-07-104	Neutron magnetic form factor	Gilfoyle	٨.	30		Neutron		/	liquid
PR12-11-109 (a)	Dihadron DIS production	Avakian			90	detector RICH (1 sector)	11	в	D ₂ target
E12-09-007a	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	56		Forward tagger		K. Halivi	
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	TBA	1				
E12-11-003	DVCS on neutron target	Niccolai	A	90]				
E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	A	80		Polarized target			NH ₃
E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	A	120		RICH (1 sector) Forward tagger			ND ₃
E12-07-107	Spin-Orbit Correl, with Longitudinally polarized target	Avakian	A-	103	170		11	С	
PR12-11-109 (b)	Dihadron studies on long, polarized target	Avakian	1.0					S. Kuhn	
E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A-	110					
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103					
E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60		11	D	Nuclear
E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	E	Nuclear
E12-10-102	Fine Neutron structure at large x	Bueltman	A	40	40	Radial TPC	11	F	Gas D ₂
TOTAL approved run time (PAC days)					559				

A proposal for coherent J/ ψ production on deuterium will be submitted in 2017.

TCS with the planned SoLID detector in Hall A

33

E12-12-006A

Approved for 50 PAC days as part of to a run group together with I experiment E12-12-001

Run Group Proposal with E12-12-006 at Jefferson Lab PAC 43 Timelike Compton Scattering on the proton in e^+e^- pair production with SoLID at 11 GeV

I. Albayrak,¹ A. Camsonne,² M. Boer^{*},³ D. Crabb,⁴ D. Day,⁴ N. Dien,⁴ M. Guidal,³ V. Guzey,⁵ T. Horn,¹ C. Hyde,⁶ Y. Ilieva,⁷ D. Keller,⁴ H.-S. Jo,³ C. Keppel,² P.E.C. Markowitz,⁸ H. Moutarde,⁹ C. Munoz Camacho,³ P. Nadel-Turonski^{*},² R. Paremuzyan,^{3,10} P. Gueve,¹¹ B. Pire,¹² F. Sabatié,⁹ P. Schweitzer,¹³ S. Stepanyan,² L. Szymanowski,¹⁴ A. Thomas,¹⁵ J. Wagner,¹⁴ C. Weiss,² N. Zachariou,⁷ J. Zhang^{*},⁴ Y. Zhao,¹⁶ and Z.W. Zhao ^{* †17} ¹Catholic University of America, Washington, D.C. 20064 ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ³Institut de Physique Nucleaire d'Orsay, IN2P3, BP 1, 91406 Orsay, France ⁴University of Virginia, Charlottesville, VA 22904 ⁵Petersburg Nuclear Physics Institute, Gatchina 188300, Russia ⁶Old Dominion University, Norfolk, Virginia 23529 ⁷University of South Carolina, Columbia, South Carolina 29208 ⁸Florida International University, Miami, Florida 33199 ⁹CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France ¹⁰Yerevan Physics Institute, 375036 Yerevan, Armenia ¹¹Hampton University, Hampton, VA 23668 ¹²CPhT, École Polytechnique, 91128 Palaiseau, France ¹³University of Connecticut, Storrs, Connecticut 06269 ¹⁴National Center for Nuclear Research (NCBJ), 00-681 Warsaw, Poland ¹⁵University of Adelaide, Adelaide SA 5005 AUSTRALIA ¹⁶University of Science and Technology of China, Heifei, Anhui 230026, China ¹⁷Duke University, Durham, NC 27708 (Dated: May 18, 2015)

*Co-spokesperson

[†]Contact person: zwzhao@jlab.org

SoLID acceptance in two bins of Q'²

Projected results for 50 days at 5x10³⁶ in SoLID

• Projected results in different bins of skewness for dual parametrization (blue) and double-distribution with (dash-dotted red) or without (dashed red) D-term.

Future direction – polarization!

Polarized beams and targets planned for next generation of TCS experiments

- Additional observables provide a strong constraint on GPD extraction even if TCS statistics will more limited than DVCS
- Sensitivity to the elusive GPD E with transversely polarized targets

New measurements

- Linearly polarized photons and target in CLAS12
- Transversely polarized target in Hall A (SoLID) and Hall C (NPS)

Summary

• Charmonium pentaquark?

TCS is an essential part of the GPD program

- Universality of GPDs
- Combined fits of CFFs with DVCS

More than a year of (calendar) beam time has been approved for TCS at JLab 12 GeV for CLAS12 in Hall B and SoLID in Hall A

• Extensions to linearly polarized beams (Hall B) and targets (Hall C)

 J/ψ photoproduction near threshold offers unique opportunties

- LHCb charmonium pentaquark
- Extension to nuclear targets

Projected results for 50 days of SoLID sunning

Charmonium is a probe of the nucleon's color field

At high $Q^2 c\bar{c}$ is produced in small-size configurations

- *c.f.* color transparency
- Local probe of color field

J/ψ photoproduction

- Probes distances $\approx 1/\sqrt{Q^2 + M_{J/\psi}^2} \approx 1/M_{J/\psi}$
- J/ ψ radius still smaller than nucleon: $r_{J/\psi} \sim 0.2 0.3$ fm << 1 fm

Exclusive J/ ψ kinematics near threshold

Four-momentum transfer to the nucleon

$$t = -(\zeta^2 m_N^2 + \Delta_T^2)/(1-\zeta)$$

- ζ is the "plus" momentum transfer
 light cone variables
- $\Delta_{\rm T}$ is the transverse momentum transfer
- t_{min} at threshold is 2.2 GeV²

C. Weiss, Non-perturbative forces in QCD, Temple U., 26-28 March 2012

Conservative (J/ψ) yield projections in two sample bins

Reaction e+p→e⁺+e⁺+p+(e⁻) at 11 GeV with CLAS12

J/ψ mass resolution in CLAS12

• The CLAS12 resolution is good for J/ψ for fields at half field or above.