3He++ ion source development at RHIC
A.Zelenski, J.Alessi, E.Beebe, J.Ritter, A.Pikin, G.Atoian, BNL
J.Maxwell, R.Milner, LNS, MIT

3He++ polarization technique using Electron Beam Ion Source
• 3He metastability-exchange polarization in the high magnetic field
• Optical pumping, polarization measurements.
• Sealed cell
• Open cell, gas purification system
Why a Polarized Helium 3 Source?

- Polarized DIS crucial for study of neutron spin structure
 - PPDFs; tests of QCD, Bjorken sum rule; higher energies

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>88.6%</td>
</tr>
<tr>
<td>S'</td>
<td>1.5%</td>
</tr>
<tr>
<td>D</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

- S-state 3He: nuclear spin carried by the neutron
- 3He's magnetic moment close to n, compatible with RHIC spin manipulation
- Polarized 3He ions offer a "polarized neutron beam" for RHIC and a future eRHIC
eRHIC: Electron Ion Collider at BNL

Add an electron accelerator to the existing $2.5B RHIC including existing RHIC tunnel, detector buildings and cryo facility

Luminosity: $10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- 70% polarized protons
 - 25 - 250 (275*) GeV
- Light ions (d, Si, Cu)
- Heavy ions (Au, U)
 - 10 - 100 (110*) GeV/u
- Pol. light ions (He-3)
 - 17 - 167 (184*) GeV/u

80% polarized electrons:
- 2.6 – 21.2 GeV

Center-of-mass energy range: 20 – 145 GeV

Full electron polarization at all energies
Full proton and He-3 polarization with six Siberian snakes

Any polarization direction in electron-hadron collisions:

* It is possible to increase RHIC ring energy by 10%
3He$^{++}$ spin tracking in eRHIC with 6-snares

- 8 particles on the same betatron amplitude
- Perfect closed orbit
- No momentum spread
Requirements to the $^3\text{He}^{++}$ source

- Intensity $\sim 2 \cdot 10^{11}$ $^3\text{He}^{++}$ ions in 10 us pulse ~ 4.0 mA
- Maximum polarization $> 80\%$
- Spin flip every pulse
- Compatibility with the operational EBIS for heavy ion physics
- Polarimetry ?

<table>
<thead>
<tr>
<th>Source</th>
<th>Current</th>
<th>Polarization</th>
<th>Emittance</th>
<th>Beam Energy</th>
<th>Energy Spread</th>
<th>Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birmingham</td>
<td>50 pnA</td>
<td>55-65%</td>
<td>70 mm mrad.</td>
<td>29 keV</td>
<td>100 eV</td>
<td>3He$^{++}$</td>
</tr>
<tr>
<td>Laval</td>
<td>100 nA</td>
<td>95%</td>
<td>25 mm mrad.</td>
<td>12 keV</td>
<td></td>
<td>3He$^+$</td>
</tr>
<tr>
<td>Rice/Texas A&M</td>
<td>8 µA</td>
<td>11%</td>
<td>10 mm m V MeV$^{1/2}$</td>
<td>16 keV</td>
<td>10-50 eV</td>
<td>3He$^+$</td>
</tr>
</tbody>
</table>

No new operational 3He ion sources were built. A number of new ideas were proposed and tested (not successfully).

Spin-exchange and “metastability-exchange” techniques for 3He atoms polarization were greatly improved due to laser development and demanding applications.
Injections of 3He gas polarized in the external cell into EBIS.

3He polarization inside the EBIS in high magnetic field. No polarization losses during beam transport through gradient magnetic field.

EBIS is used for efficient ionization and accumulation of polarized 3He$^{++}$ ions.
RHIC’s Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec
Radial trapping of ions by the space charge of the electron beam. Axial trapping by applied electrostatic potentials at ends of trap.

- The total charge of ions extracted per pulse is $\sim (0.5 - 0.8) \times (\# \text{ electrons in the trap})$
- Ion output per pulse is proportional to the trap length and electron current.
- Ion charge state increases with increasing confinement time.
- Output current pulse is \sim independent of species or charge state!
EBIS Beams Run to Date

D, $^3\text{He}^{2+}$, $^4\text{He}^{1+}$, $^2+$, Li^{3+}, C^{5+}, O^{7+}, Ne^{5+}, Al^{5+}, Si^{11+}, Ar^{11+}, Ca^{14+}, Ti^{18+}, Fe^{20+}, Cu^{1+}, Kr^{18+}, Xe^{27+}, Ta^{38+}, Au^{32+}, Pb^{34+}, U^{39+}. Capable of $^3\text{He} \Rightarrow ^3\text{He}^{++}$ at nearly 100%

He-3 metastability-exchange polarized cell.

Pumping laser 1083 nm.

He(2S) → He(1S)

EBIS-ionizer, $B \sim 50$ kG

2.5·10^{11} He$^{++}$/pulse

He-transfer line. Valve.

~$50\cdot10^{11}$, ^3He/pulse.
P=70-80%.
Principle of Metastability Exchange
Optical Pumping (MEOP) in 3He

3He(↓) + 3He*(↑) → 3He*(↓) + 3He(↑)

optical pumping

2^3P_0 → 2^3S_1 (indirect plasma excitation $n_m / N_g \approx 1$ ppm)

1^1S_0 (ground state)

$B \approx 10$ G
$p \approx 1$ mbar

before
after

strong coupling by metastability exchange collisions → efficient transfer of nuclear orientation
MIT-BNL collaboration on polarized $^3\text{He}^{++}$ ion source development

MIT Test Lab
- Magnet, vacuum, laser setup
- 70% polarization achieved
- Allows flow of polarized gas between cells
- Observe polarization diffusion through region of depolarizing gradients
- Test bed for polarization, transfer and data acquisition
- Discharge and optical probe polarimeter development

BNL Test Polarizer
- Polarizer on movable stand
- EBIS 5 T spare solenoid
- Allows polarization at any location in the stray field
- Initial results from test at 1 T with sealed cell, max 50% polarized
 - Only stray field, 17% with ~0.5 A pump
 - Only stray field, 28% with ~10 A pump
 - 6 second relaxation, matches calculation nicely
 - Adding 30 G holding field improves as expected

5Maxwell, Epstein, Milner, NIM A (764), 2014.
BNL Test Polarizer

- Polarizer on movable stand
- EBIS 5 T spare solenoid
- Allows polarization at any location in the stray field
- Initial results from test at 1 T with sealed cell, max 50%
 - Only stray field, 17% with \(~0.5\) A pump
 - Only stray field, 28% with \(~10\) A pump
 - 6 second relaxation, matches calculation nicely
 - Adding 30 G holding field improves as expected
Injection of polarized 3He-gas in EBIS

- Polarize to $\sim 70\%$ at 1 torr with 10 W laser
- Transfer $\sim 10^{14}$ 3He/s to EBIS at 5 T & 10^{-7} torr
- Deliver 1.5×10^{11} 3He$^{++}$ ions per 20 μsec pulse
MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above 1 T in last ten years

- M. Abboud, Europhys. Lett. 68, 2004
 - 1.5 T; 0.5, 2 W OP laser
 - 1.3, 8, 32, 67 mbar
 - Circles and stars are at 1.5 T, others at low field
BNL High Field Tests

- EBIS spare solenoid at 1, 2, 3, and 4 T
- Low field polarimetry technique not effective above 10 mT
- High-field polarimetry with low power probe laser
 - AM on discharge for lock-in detection
- Sealed cells at 1 torr with two cell geometries
 - 5 cm OD, 5 cm long
 - 3 cm OD, 10 cm long
Optical Probe Polarimetry

- High or low field, no calibration required
- Sweep low power probe laser through two $2^3S - 2^3P$ transitions to directly probe states $^8, ^9$

Measuring Optical Pumping

Probe Laser Absorption Peaks at Zero and High Polarization

M = 0
M = 0.89

Preliminary
Jan 18, 2016, Sealed cell-Pol.- 88%

Probe laser absorption polarimeter, J. Maxwell-2015
3He polarization in high magnetic field using 5.0 T spare EBIS solenoid at BNL, 2015

80-84 % polarization was measured in experiments with sealed 3H-cell in high magnetic field.
High Field Conclusions Thus Far

- First results for MEOP at 3, 4 T and 1 torr, to near 90%
 - With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it’s easy!
 - Cell which we struggled to get to 70% at 30 G reach over 80% at high field
 - Field uniformity a given at high field

High polarizations from MEOP over 1 T

- At high field, OP and ME both still work
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser
Optical pumping laser layout

- **WS6-200**
- **Pumping laser**
- **Probe laser, Toptica, diode laser**
- **Detector**

Pumping laser - Keopsys 10 W, 1083 nm, fiber laser
3He Laser system for optical pumping and polarization measurements
Laser wavelength and Line-width control, with wavelength meter WS6-200

276.7558 THz

1083 nm

1.2 GHz
Jan 18, 2016, Sealed cell-Pol.- 94.5%,
Probe laser controller

Pumping laser controller

RF master oscillator and amplifier
High Field Conclusions Thus Far

- First results for high field, O(100 G)
 - With discharge over 90%
- Not only is this achieved in O(100 G),
 - Cell which work over 80%
- Field uniformity over 70%

High polarizations

- At high field, O(100 G)
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser
New “open” 3He-cell and gas system for 3He-cell preparation and filling
3He-gas purification and filling system

Non-magnetic pneumatic remotely controlled Isolation Valve: IV
He-cell valve closed, RF-33.4 MHz, Amp-0.100, He-3-1.08 torr
He-cell valve closed, RF-33.4 MHz, Amp-0.100, He-3-1.08 torr

Large contamination by H2, H2O, Hydrocarbons, Argon as seen in RGA
3He cryo- purification system built-in CTI-8 cryopump.
3He-gas purification and filling system
June 21, He-fill with CP-pumping at 45deg. K. Very clean spectra, no hydrogen 656 nm line!
Helium Spectrum, 380-900 nm

- 388 nm
- 471 nm
- 447 nm
- 492 nm
- 501 nm
- 558 nm
- 588 nm
- 616 nm
- 668 nm
- 706 nm
- 728 nm
- 778 nm
- 846 nm
3.5 torr, Isolation Valve (IV)-open
3.5 torr, Isolation Valve (IV)-closed, P=63%
“Open cell”, 3He-3.5 torr, Pol-73%
June 30, 3.0 torr, 56%, relaxation time -30 s
RF-discharge in 2.0 T magnetic field.

3He-cell diameter-25mm

RF-discharge parameters strongly affect maximum polarization. Optimization of the 3He-cell geometry (smaller diameter?) and electrodes for RF input should improve polarization.
EBIS upgrade with new “injector” solenoid for polarized 3He^{++} ion production.

BNL-MIT collaboration

Optical pumping in High magnetic field

Polarization and ionization in high magnetic field will produce 3He^{++} ion beam with $P \geq 80\%$

Up to 2×10^{11} 3He^{++} ions/pulse
Depolarization due to lower field in the gap between two solenoids.

- Critical field for He^+ ions is 3.1 kG.
- Therefore, about 10 kG field is required at the point of second ionization He$^+$ to He$^{++}$ to minimize depolarization.
- The design of solenoid with this high field in the gap is feasible.
- Due to reduced probability of ionization in the gap (low electron current density), this requirements can be somewhat relaxed.
Extended EBIS

• **Scope**
 • Add superconducting solenoid for trap length extension, expect +40% Au intensity
 • (early completion would shorten time for 2 highest energies in BES-II; also allows for next step in polarized ^3He R&D)

• **Cost and funding**

<table>
<thead>
<tr>
<th></th>
<th>FY2016</th>
<th>2017</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$475k</td>
<td>1350k</td>
<td>1.8M</td>
</tr>
<tr>
<td>(P)</td>
<td>(P)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Schedule**
 • 2016 start (solenoid acquisition)
 • 2020 planned completion

 largest risk (cost, schedule and performance):
 superconducting solenoid magnet
EBIS center drift tube

He-cell

Valve
He-ionizer cell and three-grid energy separation system
5.3 MeV Helium3–Helium4 Polarimeter

- Transverse polarized 3He beam on unpolarized 4He at 5 torr\(^{10}\), early design by C. Epstein
- At 5.3 MeV, asymmetry due to polarization goes to 1 at 91\(^\circ\) center of mass → 3He at 53.6\(^\circ\) and 2.66 MeV
- Recoil 4He as a background at 1.83 MeV, so use 500 μm partially depleted silicon detector for energy resolution
- At 50\% polarization, expect 3.7\% accuracy in 1 minute

Plan for EBIS upgrade for the Run-2019-20

- EBIS upgrade for higher heavy beams intensities and provisions for polarized 3He^{++} ion beam.
- At first upgraded EBIS will be used for the Gold run in 2019.
- Development of the 3He part in 2016-1018.
- Polarized 3He^{++} beam of 2.0×10^{11} ions/pulse and 80 % polarization in 2020.