3He⁺⁺ ion source development at RHIC

A.Zelenski, J.Alessi, E.Beebe, J.Ritter, A.Pikin, G.Atoian, BNL J.Maxwell, R.Milner, LNS, MIT

3He⁺⁺ polarization technique using Electron Beam Ion Source

- •3He metastability-exchange polarization in the high magnetic field
- Optical pumping, polarization measurements.
- Sealed cell
- Open cell, gas purification system

Why a Polarized Helium 3 Source?

- Polarized DIS crucial for study of neutron spin structure
 - PPDFs; tests of QCD, Bjorken sum rule; higher energies

State	Probability
S	88.6%
S'	1.5%
D	8.4%

- S-state ³He: nuclear spin carried by the neutron
- ³He's magnetic moment close to n, compatible with RHIC spin manipulation
- Polarized ³He ions offer a "polarized neutron beam" for RHIC and a future eRHIC

eRHIC: Electron Ion Collider at BNL

Add an electron accelerator to the existing \$2.5B RHIC including existing RHIC tunnel, detector buildings and cryo facility

Center-of-mass energy range: 20 – 145 GeV Full electron polarization at all energies Full proton and He-3 polarization with six Siberian snakes Any polarization direction in electron-hadron collisions:

^{*} It is possible to increase RHIC ring energy by 10%

3He++ spin tracking in eRHIC with 6-snakes

Requirements to the 3Hett source

- Intensity $\sim 2.10^{11}$ 3He⁺⁺ ions in 10 us pulse \sim 4.0 mA
- Maximum polarization > 80%
- Spin flip every pulse
- Compatibility with the operational EBIS for heavy ion physics
- Polarimetry?

Polarized ³He sources. Status 1984.

Source	Current	Polarization	Emittance	Beam Energy	Energy Spread	Ion
Birmingham	50 pnA	55-65%	70 mm mrad.	29 keV	100 eV	3He ++
Laval	100 nA	95%	25 mm mrad.	12 keV	,	³He+
Rice/Texas A&M	8 µА	11%	10mm mr MeV ^{1/2}	16 keV	10-50 eV	3He+

No new operational ³He ion sources were built. A number of new ideas were proposed and tested (not successfully).

Spin-exchange and "metastability-exchange" techniques for ³He atoms polarization were greatly improved due to laser development and demanding applications.

Production of polarized ³He⁺⁺ beam in EBIS. A.Zelenski, J.Alessi, ICFA Beam Dynamics Edition Newsletter **30**, p.39, (2003)

- Injections of ³He gas polarized in the external cell into EBIS.
- ³He polarization inside the EBIS in high magnetic field. No polarization losses during beam transport through gradient magnetic field.
- EBIS is used for efficient ionization and accumulation of polarized 3He++ ions

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

Principle of EBIS Operation

Radial trapping of ions by the space charge of the electron beam. Axial trapping by applied electrostatic potentials at ends of trap.

- The total charge of ions extracted per pulse is \sim (0.5 0.8) x (# electrons in the trap)
- Ion output per pulse is proportional to the trap length and electron current.
- Ion charge state increases with increasing confinement time.
- Output current pulse is ~ independent of species or charge state!

EBIS Beams Run to Date

D,
$${}^{3}\text{He}^{2+}$$
, ${}^{4}\text{He}1^{+,2+}$, Li^{3+} , C^{5+} , O^{7+} , Ne^{5+} , Al^{5+} , Si^{11+} , Ar^{11+} , Ca^{14+} , Ti^{18+} , Fe^{20+} , Cu^{1+} , Kr^{18+} , Xe^{27+} , Ta^{38+} , Au^{32+} , Pb^{34+} , U^{39+} . Capable of ${}^{3}\text{He} \Rightarrow {}^{3}\text{He}^{++}$ at nearly 100%

PSTP, Sept 16, 2015 J. Maxwell

Production of polarized ³He⁺⁺ beam in EBIS.

A. Zelenski, J. Alessi, ICFA Beam Dynamics Edition

Newsletter 30, p.39, (2003)

Principle of Metastability Exchange Optical Pumping (MEOP) in ³He

MIT-BNL collaboration on polarized ³He⁺⁺ ion source development

MIT Test Lab

- Magnet, vacuum, laser setup
- 70% polarization achieved
- Allows flow of polarized gas between cells
- Observe polarization diffusion through region of depolarizing gradients
- Test bed for polarization, transfer and data acquisition
- Discharge and optical probe polarimeter development⁵

⁵Maxwell, Epstein, Milner, NIM A (764), 2014.

J.Maxwell, C.Epstein, R.Milner, MIT J.Alessi, E.Beebe, A.Pikin, J.Ritter G.Atoian, A.Zelenski, BNL

BNL Test Polarizer

- Polarizer on movable stand
- EBIS 5 T spare solenoid
- Allows polarization at any location in the stray field
- Initial results from test at 1 T with sealed cell, max 50%
 - Only stray field, 17% with ∼0.5 A pump
 - Only stray field, 28% with ∼10 A pump
 - 6 second relaxation, matches calculation nicely
 - Adding 30 G holding field improves as expected

BNL Test Polarizer

- Polarizer on movable stand
- EBIS 5 T spare solenoid
- Allows polarization at any location in the stray field
- Initial results from test at 1 T with sealed cell, max 50%
 - Only stray field, 17% with \sim 0.5 A pump
 - Only stray field, 28% with \sim 10 A pump
 - 6 second relaxation, matches calculation nicely
 - Adding 30 G holding field improves as expected

Injection of polarized 3He-gas in EBIS

MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above 1 T in last ten years
- M. Abboud, Europhys. Lett. 68, 2004
 - 1.5 T; 0.5, 2 W OP laser
 - 1.3, 8, 32, 67 mbar
 - Circles and stars are at 1.5 T, others at low field

BNL High Field Tests

- EBIS spare solenoid at 1, 2,
 3, and 4 T
- Low field polarimetry technique not effective above 10 mT
- High-field polarimetry with low power probe laser
 - AM on discharge for lock-in detection
- Sealed cells at 1 torr with two cell geometries
 - 5 cm OD, 5 cm long
 - 3 cm OD, 10 cm long

J. Maxewell, PSTP 2015

Optical Probe Polarimetry

- High or low field, no calibration required
 - Sweep low power probe laser through two 2³S-2³P transitions to directly probe states^{8,9}

⁸Courtade *et al*, Eur. Phys. J. D 21 (2002).

⁹Suchanek et al, Eur. Phys. Special Topics 144 (2007).

Measuring Optical Pumping

Probe Laser Absorption Peaks at Zero and High Polarization

Jan18,2016, Sealed cell-Pol.-88%

Probe laser absorption polarimer, J.Maxwell-2015

3He -polarization in high magnetic field using 5.0 T spare EBIS solenoid at BNL, 2015

80-84 % polarization was measured in experiments with sealed 3H-cell in high magnetic field.

High Field Conclusions Thus Far

- First results for MEOP at 3, 4 T and 1 torr, to near 90%
 - With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it's easy!
 - Cell which we struggled to get to 70% at 30 G reach over 80% at high field
 - Field uniformity a given at high field

High polarizations from MEOP over 1 T

- At high field, OP and ME both still work
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser

J. Maxewell, PSTP 2015

Optical pumping laser layout

3He Laser system for optical pumping and polarization measurements

Laser wavelength and Line-width control, with wavelength meter WS6-200

Jan18,2016, Sealed cell-Pol.- 94.5%,

Probe laser controller

Pumping laser controller

RF master oscillator and amplifier

High Field Conclusions Thus Far

First results for

With discha

Not only is this

 Cell which v over 80% at

Field uniforr

o near 90%

0 G reach

High polarizations

- At high field, O
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser

J. Maxewell, PSTP 2015

New "open" 3He-cell and gas system for 3Hecell preparation and filling

3He-gas purification and filling system

Non-magnetic pneumatic remotely controlled Isolation Valve: IV

He-cell valve closed, RF-33.4 MHz, Amp-0.100, He-3-1.08 torr

He-cell valve closed, RF-33.4 MHz, Amp-0.100, He-3-1.08 torr

3He cryo- purification system built-in CTI-8 cryopump.

3He-gas purification and filling system

June 21, He-fill with CP-pumping at 45deg. K. Very clean spectra, no hydrogen 656 nm line!

3.5 torr, Isolation Valve (IV)-open

3.5 torr, Isolation Valve (IV)-closed, P=63%

"Open cell", 3He-3.5 torr, Pol-73%

June 30, 3.0 torr, 56%, relaxation time -30 s

RF-discharge in 2.0 T magnetic field. 3He-cell diameter-25mm

RF-discharge parameters strongly affect maximum polarization.

Optimization of the 3He -cell geometry (smaller diameter?) and electrodes for RF input should improve polarization.

EBIS upgrade with new "injector" solenoid for polarized 3He++ ion production.

BNL-MIT collaboration

Depolarization due to lower field in the gap between two solenoids.

- Critical field for 3He⁺ ions is 3.1 kG.
- Therefore, about 10 kG field is required at the point of second lonization He⁺ to He⁺⁺ to minimize depolarization.
- The design of solenoid with this high field in the gap is feasible.
- Due to reduced probability of ionization in the gap (low electron current density), this requirements can be somewhat relaxed.

Extended EBIS

- Scope
- •Add superconducting solenoid for trap length extension, expect +40% Au intensity
- •(early completion would shorten time for 2 highest energies in BES-II; also allows for next step in polarized ³He R&D)

Cost and funding

FY2016	2017	Total
\$475k	1350k	1.8M
(P)	(P)	

extension

trap length

Schedule

- •2016 start (solenoid acquisition)
- •2020 planned completion

largest risk (cost, schedule and performance): superconducting solenoid magnet

EBIS center drift tube

He-ionizer cell and three-grid energy separation system

5.3 MeV Helium3–Helium4 Polarimeter

- Transverse polarized ³He beam on unpolarized ⁴He at 5 torr¹⁰, early design by C. Epstein
- At 5.3 MeV, asymmetry due to polarization goes to 1 at 91° center of mass \rightarrow 3 He at 53.6° and 2.66 MeV
- Recoil 4 He as a background at 1.83 MeV, so use 500 μ m partially depleted silicon detector for energy resolution
- At 50% polarization, expect 3.7% accuracy in 1 minute

¹⁰G.R. Plattner, A.D. Bacher. Physics Letters B 36.3 (1971)

Plan for EBIS upgrade for the Run-2019-20

- EBIS upgrade for higher heavy beams intensities and provisions for polarized 3He⁺⁺ ion beam.
- Second solenoid construction and spare solenoid upgrade in 2016-2017.
- At first upgraded EBIS will be used for the Gold run in 2019.
- Development of the 3He part in 2016-1018.
- Polarized 3He⁺⁺ beam of 2.0*10^11 ions/pulse and 80 % polarization in 2020