The RHIC polarized H- ion source

A. Zelenski Brookhaven National Laboratory

- Polarized beams in RHIC accelerator complex
- High-intensity polarized H⁻ ion source
- Polarized beams in Run-2015
- Summary

Polarization facilities at RHIC

RHIC Polarized beam in Run 2013-15

~1.8·10¹¹ p/bunch, P~60-65% at 100 GeV P ~ 58% at 255 GeV

It is expected, that use of Electron Lens will allow increase of the bunch intensity to $\sim 2.5 \cdot 10^{11}$ p/bunch.

The RHIC OPPIS upgrade with atomic hydrogen injector, Run-2013-15

BNL - BINP, Novosibisk, INR, Moscow- collaboration

SPIN -TRANSFER POLARIZATION IN PROTON-Rb COLLISIONS

Laser beam is a primary source of angular momentum:

10 W (795 nm) \implies 4•10¹⁹ hv/sec \implies 2 A, H⁰ equivalent intensity.

New generation OPPIS with atomic H⁰ injector

High-brightness proton beam inside strong 2.5 T solenoid field produced by atomic H beam ionization in the He-gas ionizer cell

The proton beam intensity is about 1.0 A!

Hydrogen atomic beam ionization efficiency in the He-cell

$$H^0$$
 + He \rightarrow H⁺ + He + e

New OPPIS with atomic H^o injector layout, 2013

Optical Pumping polarization technique

Laser beam is a powerful primary source of angular momentum:

10 W (795 nm) \rightarrow 4•10¹⁹ hv/sec \rightarrow 2 A, H⁰ equivalent intensity.

Feasibility of Multi-ampere polarized beams.

Rb -cell preparation for the Run-2017, higher 6.0 kV deflecting plate voltage.

Optical pumping of Rb-85 (72.7%), Rb-87(27.8%) natural mixture..

Effective width of Rb 85-87 natural mixture including hyperfine Splitting and Doppler broadening is ~ 3.2 GHz

Problems with laser line-width control

Ti:LISAF tunable laser for Rb optical pumping at 795 nm.

Fabry-Perot etalon

Flash-lamp pumping. Pulse duration 400 us

Laser wavelength and Line-width control

Laser spectra with two intra-cavity Fabry-Perot etalons

"Fast Atomic Beam Source", BINP, Novosibirsk, 2012

FABS 4-grid spherical Ion Optical System

8 keV, L=230cm, I-3.4 A, April 26, 2012

New slit-type IOS grid for higher brightness beam formation, for Run-2017

Grid assembly facilities at BINP, Novosibirsk

Residual un-polarized H^o beam component suppression by the energy separation

He-ionizer cell and 3-grid energy separation system.

"Electro-magnetic" valve operation principle.

Force to the conducting plate in the (high \sim 3 T) magnetic field.

$$d\overrightarrow{F_A} = I[d\overrightarrow{l} \ \overrightarrow{B}]$$

For I=100 A, L=5 cm, F=15 N).

Sodium-jet ionizer cell

Transversal vapor flow in the N-jet cell. Reduces sodium vapor losses for 3-4 orders of magnitude, which allow the cell aperture increase up to 3.0 cm.

NL $\sim 2.10^{15}$ atoms/cm² L ~ 2.3 cm

Reservoir – operational temperature. Tres. ~500 °C. Nozzle – Tn ~500 °C.

Collector- Na-vapor condensation: Tcoll. \sim 120°C Trap- return line. T \sim 120 – 180 °C.

H beam acceleration to 35 keV at the exit of Na-jet ionizer cell

Na-jet cell is isolated and biased to - 32 keV. The H⁻ beam is accelerated in a two-stage acceleration system.

H⁻ beam acceleration to 35 keV at the exit

Na-jet cell is isolated and bias accelerated in a two-stage ac

Low Energy Beam Transport line.

Polarized H⁻ current-1.05 mA, after RFQ 750 keV Rb-98°

Febr. 17, 2016. 750 uA polarized current out of the Linac

Polarized injector, 200 MeV linac and injection lines.

FIG. 1. Laboratory differential cross sections and analyzing powers, as a function of laboratory scattering angle, measured for 200 MeV polarized protons elastically scattered from ¹²C and ¹³C.

Layout of the 200 MeV proton polarimeter, (2010)

Detector and variable absorber setup for 200 MeV proton beam.

Signal amplitude distribution in the first detector

Signal amplitude distribution in the 2-nd detector

Signal amplitude distribution in the 3-rd detector

84.5% polarization was measured using WFD.

84.5% polarization was measured using WFD.

Source intensity and polarization.

- Reliable long-term ·operation of the source was demonstrated.
- Very high suppression of un-polarized beam component was demonstrated.
- Small beam emittance (after collimation for energy separation) and high transmission to 200 MeV.

Rb-cell thickness-NL	4.5	5.5	7.5	10.4
Linac Current, µA	500	560	680	750
Booster Input ×10 ¹¹	9.0	10.0	12.2	13.5
Pol. %, at 200 MeV	84	83	80.5	78

Rb-cell thickness ,NL ×10¹³ atoms/cm²

Polarization in AGS, 23 GeV

AGS polarization vs. beam intensity

Run 13 H-jet polarimeter, physics stores

Polarization measurements at 255 GeV in H-jet polarimeter, Run-2013.

Polarized p-p, p-Au and p-Al collisions at 100 GeV.

p-p high- luminosity operation in Run 2015 at 100 GeV.

Summary

- A number of improvements were implemented in 2016 and preparation for the next polarized Run-2017 in RHIC.
- Atomic injector stability was improved after pulsed valve upgrades. A new IOS is under development.
- Laser wavelength and line-width control was improved with two etalon operation.
- Sodium jet ionizer reliability was improved with the new connector coupling for the hot Na-vapor and Na-metal.
- A lot of measurements at 200 MeV. Discovery of the Linac tune for the small beam emittance.
- New measurements in 200 MeV absolute elastic polarimeter with the Wave Form Digitizers.