Various structures of the neutron-rich nucleus ${ }^{31} \mathrm{Mg}$ investigated by $\beta-\gamma$ spectroscopy of spin-polarized ${ }^{31} \mathrm{Na}$

```
Hiroki Nishibata
Nuclear Spectroscopy Laboratory, RIKEN
```

PhD work at Osaka Univ.

- Applications of spin polarization to nuclear structure study.
- Unique method to assign spin-parity of excited levels based on $\beta-\gamma$ spectroscopy of spin-polarized Na isotopes.
- Investigation of nuclear structure of their daughters, i.e., Mg isotopes.

Physics motivation

Deformed ground states of neutron rich nuclei with $N^{\sim} 20$

Large-scale Shell Model calculations

SDPF-U-MIX interaction

Caurier et al., Phys.Rev. C 90 (2014) 014302
model space n : sd-pf, p: sd across the $\mathrm{N}=20$ "shell gap"

FIG. 5. (Color online) The gap between the $0 \mathrm{p}-0 \mathrm{~h}$ and the $2 \mathrm{p}-2 \mathrm{~h}$ configurations at $N=20$, without correlations (squares) and including correlations (circles). Nuclei close to or below the zero line are candidates to belong to the island of inversion.

- Nuclear correlations pull down the (2p-2h) level energies, and in some cases they become lower than the normal ($0 p-0 h$) level energies.
- The existence of islands of inversion or deformation are explained as the result of the competition between
(1) the spherical mean field and
(2) nuclear correlations which favor the deformed configurations.

Shape coexistence

competition between spherical mean field and nuclear correlation which drives deformation

investigation of shape coexistence in the low excitation energy region
comparison of the experimental and theoretical levels on the level-by-level basis

Today's talk: ${ }^{31} \mathrm{Mg}(\mathrm{N}=19)$

Various structures in ${ }^{31} \mathrm{Mg}$

 predicted by anti-symmetrized molecular dynamics plus generator coordinate method (AMD+GCM)With assuming neither deformation nor mean field, this theory predicts both collective structures and single-particle structures in low excitation energy region.

Discovery history of ${ }^{31} \mathrm{Mg}$ levels

no spin-parity assignments
D. Guillemaud-Mueller et al., Nucl. Phys. A426 (1984) 37
G. Klotz et al., Phys. Rev. C 47 (1993) 2502

Discovery history of ${ }^{31} \mathrm{Mg}$ levels

Unexpected spin-parity 1/2+ was determined in 2005 by combined measurements of hyperfine-structure and β NMR.
G. Neyens et al, Phys. Rev. Lett. 94 (2005) 022501

Discovery history of ${ }^{31} \mathrm{Mg}$ levels

O one-neutron-removal reaction from ${ }^{32} \mathrm{Al}$

Adopted levels in ${ }^{31} \mathrm{Mg}$ by NNDC (updated in 2013).

Most of the spins and parities are unassigned, except for the 1/2+ ground state.

Firm spin-parity assignments are essential to understand the structure of ${ }^{31} \mathrm{Mg}$.

Our method uses spin-polarized ${ }^{31} \mathrm{Na}$ to unambiguously assign the spins and parities of the levels in ${ }^{31} \mathrm{Mg}$.

Principle of the measurement

 and
Experiment

How to assign spin-parity of ${ }^{31} \mathrm{Mg}$ states

Asymmetry parameter A

The asymmetry parameter A is a constant depending on the daughter state spin value.

	allowed transition
$A\left(I_{i}, I_{f}\right)\{$	$\begin{cases}=\frac{I_{i}}{I_{i}+1} & \left(\text { for } I_{f}=I_{i}+1\right) \\ \simeq \frac{-1}{I_{i}+1} & \left(\text { for } I_{f}=I_{i}\right) \\ =-1 & \left(\text { for } I_{f}=I_{i}-1\right)\end{cases}$

l_{i} : the parent spin I_{f} : the daughter state spin
experimental $A \quad \square$ spin of ${ }^{31} \mathrm{Mg}$ state parity $=+$ for allowed transitions

How to measure asymmetry parameter A

ε : efficiency N : Total β decay counts
$A P$-values are measured freely from instrumental asymmetry.

$$
A P=\frac{\sqrt{R}-1}{\sqrt{R}+1} \quad\left(R=\frac{N_{L+} / N_{R+}}{N_{L-} / N_{R-}}\right)
$$

P is common for all β-transitions and can be determined by comparing two transitions.

Polarized ${ }^{31} \mathrm{Na}$ beam at TRIUMF in Canada

Target fragmentation:

 $500 \mathrm{MeV} 10 \mu \mathrm{~A}$ proton beam with UCx target
${ }^{31} \mathrm{Na}+$ ion beam intensity:
~ 800 pps (extracted), 28keV
~ 200 pps (after polarizer)

Polarizer at ISAC TRIUMF

The polarized beam stops in Pt foil.

spin polarization: collinear laser optical pumping
 P~30\%

Osaka beam line

achieved effective pol.
P ~ 32\%

Detector Setup

$8 \times$ (HPGe +2 plastic) 3 neutron TOF counters

β-detection efficiency: 15\%
γ-detection efficiency: 2.9% @ 1333keV n-detection efficiency: $0.2 \% @ 2 \mathrm{MeV}$

Experimental Results

$\beta-\gamma$ measurement: ${ }^{31} \mathrm{Na} \rightarrow{ }^{31} \mathrm{Mg}$

Determination of polarization P

$673 \mathrm{keV} \gamma$-ray peak coincident with β-rays

NL+	NR+	$A_{0.673} P=-0.11(1)$
NL-	NR-	in the same manner $A_{2.244} P=-0.33(1)$

ratio of two $A P$ values to cancel out P
$\left(A_{2.244} P\right) /\left(A_{0.673} P\right)=A_{2.244} / A_{0.673}=3.0(3)$

$$
\begin{aligned}
& I_{0.673}=3 / 2+\Rightarrow A_{0.673}=-0.4 \\
& \rho_{2.244}=1 / 2+\Rightarrow A_{2.244}=-1.0
\end{aligned}
$$

\qquad

$$
\begin{gathered}
A_{0.673} P=-0.11(1) \Rightarrow P=28(3) \% \\
A_{2.244} P=-0.33(1) \Rightarrow P=33(1) \% \\
P=32(1) \%
\end{gathered}
$$

Spin-parity assignments of ${ }^{31} \mathrm{Mg}$ levels

experimental $A P$ values and polarization $P=32(1) \%$

5 levels are firmly assigned!
The 50 keV level was assigned as 3/2+ for the first time.

Decay scheme of ${ }^{31} \mathrm{Na} \rightarrow{ }^{31} \mathrm{Mg}$

Comparison with predictions

 by Antisymmetrized Molecular Dynamics (AMD+GCM) theory
Comparison of energy levels

Summary

- We confirmed three types of rotational bands and spherical states.
- This is the experimental evidence of the coexistence of various structures.

Collaborators of TRIUMF experiment S1391 (Aug. 2014)

Osaka University, Japan
H. Nishibata, T. Shimoda, A. Odahara, S. Morimoto, S. Kanaya, Y. Yagi,
H. Kanaoka

TRIUMF, Canada
M. Pearson, C. D. P. Levy

Thank you for your attention.

End of presentation

Optical Pumping

with hyperfine int.
without hyperfine int.

1368 MHz
To achieve high polarization we need two laser beams.
$\xrightarrow[\text { laser freq. } \mathrm{V}]{\stackrel{1368 \mathrm{MHz}}{\stackrel{y}{*}} \text {. }}$

How to assign spin-parity of ${ }^{31} \mathrm{Mg}$ states

High polarization is essential for radioactive nuclear beams.

β-branch: 1\%, γ-detection efficiency 1\%, 24 hrs accumulation time

Litherland et al., Can J. Phys. 36 (1958) 378
$K=1 / 2$ rotational bands in ${ }^{31} \mathrm{Mg}$

Positive-parity states

Negative-parity states

a : decoupling parameter

$K=1 / 2$ rotational bands in ${ }^{31} \mathrm{Mg}$

Positive-parily states

$$
a=-0.8 \quad a=-4.4
$$

Decoupling parameter a depends on the orbit occupied by the unpaired nucleon.

Configuration could be estimated from the $K=1 / 2$ rotational band observed in ${ }^{25} \mathrm{Mg}$.

Negative-parity states

$$
{ }^{31} \mathrm{Mg}
$$

$E(I)=\frac{\hbar^{2} \quad \begin{array}{c}\text { decoupling parameter }(\boldsymbol{a}) \\ 2 \mathcal{J}\end{array}\left[(I+1)+a(-1)^{I+1 / 2}(I+1 / 2)\right]}{\boldsymbol{a} \cdot \text { decoupling parameter }}$ a : decoupling parameter from the ordering of spins and energy difference between states

rotational motion in odd-A nuclei
z : symmetry axis
\boldsymbol{j} : particle angular momentum
\boldsymbol{R} : rotational angular momentum
\boldsymbol{K} : projection of the total angular momentum on the symmetry axis
I: total angular momentum
$K=1 / 2$ rotational bands in ${ }^{31} \mathrm{Mg}$

Positive-parity states

$$
\begin{aligned}
& a=-0.8 \quad{ }^{31} \mathrm{Mg} \quad a=-4.4 \\
& K=1 / 2+\quad K=1 / 2-
\end{aligned}
$$

Values of decoupling parametera Is in good agreement with each other.
K^{π} : projection of the total angular momentum on the symmetry axis
${ }^{31} \mathrm{Mg} \quad K=1 / 2$ rotational band
Positive $1 / 2+[200]$
Negative 1/2-[330]
N : principal quantum number
$K \pi\left[N n_{z} \Lambda\right]^{n_{z}:} \begin{aligned} & \text { number of nodes in the wave } \\ & \text { function in the } z \text { direction }\end{aligned}$
1: projection of the orbital angular momentum on the symmetry axis

Nilsson diagrams for ${ }^{31} \mathrm{Mg}$

kuko Hamamoto, Phys. Rev. C76 (2007) 054319
neutron one-particle levels in ${ }^{31} \mathrm{Mg}$

β-delayed neutrons

levels above S_{n}

tentatively proposed

$$
{ }^{30} \mathrm{Mg}
$$

g.s.

Analysis in progress

Comparison of logft values
between experimental results and AMD+GCM calculation

How is the level scheme of 31 Mg revised?

NNDC in 2013

Present work
(TRIUMF experiment S1391 in 2014)

spin-parity assignment of the levels at 1.436 and 0.942 MeV

(1) $1.436-\mathrm{MeV}$ level

E_{γ} (keV)	$E_{i} \rightarrow E_{f}$ (MeV)	$I_{\exp }$ (relative)	$I^{\pi}(1.436 \mathrm{MeV})$	$\sigma \lambda$	$T_{W . e .}(\sigma \lambda)$	$I_{\mathrm{W} . \mathrm{e} .}$ (relative)
2244	$2.244 \rightarrow$ g.s.	1			$(\mathrm{~s})$	

hindrance factor of E1 : ~10-2 from 2.244 ---> 0.221 MeV (1/2+) (3/2-)

(2) $0.942-\mathrm{MeV}$ level

E_{γ} (keV)	$E_{i} \rightarrow E_{f}$ (MeV)	$I_{\exp }$ (relative)	$I^{\pi}(0.942 \mathrm{MeV})$	$\sigma \lambda$	$T_{W . e .}(\sigma \lambda)$	$I_{\text {W.e. }}$ (relative)
892	$0.942 \rightarrow 0.50$	1	$7 / 2^{-}$	$M 2$	5.6×10^{-9}	1
942	$0.942 \rightarrow$ g.s.	$0.8(3)$	$7 / 2^{-}$	$E 3$	3.2×10^{-5}	1.9×10^{-4}
892	$0.942 \rightarrow 0.50$	1	$1 / 2^{-}, 3 / 2^{-}, 5 / 2^{-}$	$E 1$	9.7×10^{-16}	1
942	$0.942 \rightarrow$ g.s.	$0.8(3)$	$5 / 2^{-}$	$M 2$	3.4×10^{-6}	2.9×10^{-10}
			$1 / 2^{-}, 3 / 2^{-}$	$E 1$	8.2×10^{-16}	1.2×10^{0}

spin-parity assignment of the level at 1.029 MeV

hindrance factor of E1 : ~10-2 from $2.244--->0.221 \mathrm{MeV}$ (1/2+) (3/2-)

No such high-energy γ-rays were observed.

Enlarged $\beta-\gamma$ coincidence spectrum for ${ }^{31} \mathrm{Mg}$ gated by β rays with more than 8 MeV indicated by solid line and the expected spectrum from the level scheme of Ref. [KLO93] shown in the dashed line.

Detection efficiency with β-gate is taken into account.

In the case of cascade feeding

Deduced A from $\beta-\gamma$ coincidence is affected by the feeding from upper levels.

measured from $\beta-\gamma_{1}$ coincidence

$$
\stackrel{\downarrow}{A_{1}^{\gamma}}=\underset{\text { known }}{A_{2}} \times \frac{I_{\gamma_{3}}}{I_{\gamma_{1}}}+\underset{\text { unknown }}{\uparrow_{1}} \times \frac{I_{\beta_{1}}}{I_{\gamma_{1}}}
$$

$$
A_{1}=A_{1}^{\gamma} \times \frac{I_{\gamma_{1}}}{I_{\beta_{1}}}-A_{2} \times \frac{I_{\gamma_{3}}}{I_{\beta_{1}}}
$$

Achieved polarization

Phil Levy @TRIUMF

${ }^{8} \mathrm{Li}: 80 \%,{ }^{9} \mathrm{Li}: 56 \%,{ }^{11} \mathrm{LI}: 55 \%$,

${ }^{20} \mathrm{Na}: 57 \%,{ }^{21} \mathrm{Na}: 56 \%,{ }^{26} \mathrm{Na}: 55 \%$, ${ }^{27} \mathrm{Na}: 51 \%,{ }^{28} \mathrm{Na}: 45 \%$,
${ }^{28} \mathrm{Na}: 28 \%,{ }^{29} \mathrm{Na}: 36 \%$, ${ }^{30} \mathrm{Na}: 31 \%,{ }^{31} \mathrm{Na}: 32 \%$

Corrected for spin-relaxation K. Minamisonno et al., Nucl. Phys. A746(2004)673c

Uncorrected for spin-relaxation, attenuation due to solid angle

Spin Relaxation

Pt $\quad \mathrm{B}_{0}=0.5 \mathrm{~T}$
${ }^{20} \mathrm{Na} 22.0(19) \mathrm{s}$ ${ }^{26} \mathrm{Na} 0.78(8) \mathrm{s}$

Korringa's relation

$$
\mathrm{T}_{1} \times \mathrm{T} \propto(I h / \mu)^{2}
$$

${ }^{30} \mathrm{Na} 600 \mathrm{~ms}$
${ }^{31} \mathrm{Na} 400 \mathrm{~ms}$

48 ms
17 ms

Figure 1: Time spectra of ${ }^{20} \mathrm{Na}$ polarization in several catchers.

${ }^{31} \mathrm{Na} \beta$-decay

TRIUMF Mass separator

TRIUMF Mass separator

$$
\Delta \mathrm{M} / \mathrm{M} \sim 1 / 10000
$$

$$
\begin{array}{ll}
{ }^{31} \mathrm{Na}-{ }^{31} \mathrm{Mg} & \Delta \mathrm{M} / \mathrm{M} \sim 1 / 1825 \\
{ }^{31} \mathrm{Na}-{ }^{31} \mathrm{Al} & \Delta \mathrm{M} / \mathrm{M} \sim 1 / 1050
\end{array}
$$

energy (Doppler) broadening of the neutralized beam

multiple collisions with Na atoms in the neutralizer

Beam tuning

（a）

共鳴点のサーチ

Doppler-shift tuning

deceleration bias (Na vapor cell)

 tuning to adjust ion beam velocity so as to meet the Doppler shiftbeta-decay asymmetry

absorption line

mode 1

Comparison with shell model calculation

G. Neyens et al., Phys. Rev. Lett. 94, 022501(2005)
M. Kimura, Phys. Rev. C75, 041302(R) (2007)

spin-parity of the ground state in ${ }^{31} \mathrm{Mg}$:

 understanding from the shell model

Negative-parity states in ${ }^{31} \mathrm{Mg}$

Lifetime measurement in ${ }^{31} \mathrm{Na} \beta$ decay

Fig. 2. A partial level scheme of ${ }^{31} \mathrm{Mg}$ and preliminary level lifetimes established in this work, except for the 51 keV level, which is taken from [2]. The suggested spin/parity assignments for the excited levels and transition multipolarities are model dependent [2] although supported by the observed transition

BaF_{2} detector rates.
H. Mach et al., Eur. Phys. J. A 25 s01, 105 (2005).

anti-symmetrized molecular dynamics plus generator coordinate method (AMD+GCM)

AMD Antisymmetrized Molecular Dynamics

Reasonably describes cluster states such as ${ }^{12} \mathrm{Be}$

Y. Kanada-En'yo et al., Phys. Rev. C 68, 014319 (2003)

$$
\begin{aligned}
& \text { A Slater determinant of single particle wave packets. } \\
& \qquad \begin{array}{l}
\Phi_{\text {int }}=\frac{1}{\sqrt{A!}} \operatorname{det}\left\{\varphi_{i}\left(\mathbf{r}_{j}\right)\right\} \\
\varphi_{i}(\mathbf{r})=\phi_{i}(\mathbf{r}) \cdot \chi_{i} \cdot \xi_{i} \\
\text { spatial: } \phi_{i}(\mathbf{r})=\exp \left\{-\left(\mathbf{r}-\mathbf{Z}_{i}\right) \mathbf{M}\left(\mathbf{r}-\mathbf{Z}_{i}\right)\right\} \\
\text { spin: } \quad \chi_{i}=\alpha_{i} \chi_{\uparrow}+\beta_{i} \chi_{\downarrow} \\
\text { isospin: } \xi_{i}=\text { proton or neutron } \\
\hat{H}=\hat{T}-\hat{T}_{g}+\hat{V}_{\text {Gogny }}+\hat{V}_{\text {Coulomb }}
\end{array}
\end{aligned}
$$

GCM Generator Coordinate Method treats collective motion

Theoretical Framework of AMD+GCM

Wave function of AMD

Variational wave function:

The parity is projected before the variation.

$$
\Phi^{\pi}=\hat{P}^{\pi} \Phi_{\mathrm{int}}
$$

Intrinsic wave function:

A Slater determinant of single particle wave packets.

$$
\begin{aligned}
& \Phi_{\mathrm{int}}=\frac{1}{\sqrt{A!}} \operatorname{det}\left\{\varphi_{i}\left(\mathbf{r}_{j}\right)\right\} \\
& \varphi_{i}(\mathbf{r})=\phi_{i}(\mathbf{r}) \cdot \chi_{i} \cdot \xi_{i}
\end{aligned}
$$

spatial: $\phi_{i}(\mathbf{r})=\exp \left\{-\left(\mathbf{r}-\mathbf{Z}_{i}\right) \mathbf{M}\left(\mathbf{r}-\mathbf{Z}_{i}\right)\right\}$
spin: $\quad \chi_{i}=\alpha_{i} \chi_{\uparrow}+\beta_{i} \chi_{\downarrow}$
isospin: $\xi_{i}=$ proton or neutron

Variational parameters:

size and deformation of Gaussian \mathbf{M} :
3×3 real sym. matrix
centroinds of Gaussian $\mathbf{Z}_{i}(i=1, \ldots, A)$: complex 3d vectors
direction of spin α_{i} and $\beta_{i}(i=1, \ldots, A)$: complex numbers

Variation after parity projection

Hamiltonian and energy:

$$
\begin{aligned}
& \hat{H}=\hat{T}-\hat{T}_{g}+\hat{V}_{\text {Gogny }}+\hat{V}_{\text {Coulomb }} \\
& E_{M K}^{J \pi}=\left\langle\Phi_{M K}^{J \pi}\right| \hat{H}\left|\Phi_{M K}^{J \pi}\right\rangle /\left\langle\Phi_{M K}^{J \pi} \mid \Phi_{M K}^{J \pi}\right\rangle
\end{aligned}
$$

Frictional cooling method:

$$
\dot{X}_{i}=(\mu+i \nu) c_{i j} \frac{\partial E_{M K}^{J \pi}}{\partial X_{j}}
$$

Ang. Mom. Proj. and GCM

Ang. Mom. Proj.:

$$
\Phi_{M K}^{J \pi}\left(m^{\mathrm{th}}\right)=\hat{P}_{M K}^{J} \Phi^{\pi}\left(m^{\mathrm{th}}\right)
$$

$$
\begin{aligned}
& \text { GCM: } \\
& \begin{aligned}
\Psi_{\alpha}^{J \pi} & =\sum_{m=1}^{n} f_{m}^{\alpha} \Phi_{M K}^{J \pi}\left(m^{\mathrm{th}}\right) \\
\left(H_{m m^{\prime}}\right. & \left.-E^{\alpha} N_{m m^{\prime}}\right) f_{m^{\prime}}^{\alpha}=0 \\
H_{m m^{\prime}} & =\left\langle\Phi_{M K}^{J \pi}\left(m^{\mathrm{th}}\right)\right| \hat{H}\left|\Phi_{M K}^{J \pi}\left(m^{\prime \mathrm{th}}\right)\right\rangle \\
N_{m m^{\prime}} & =\left\langle\Phi_{M K}^{J \pi}\left(m^{\mathrm{th}}\right) \mid \Phi_{M K}^{J \pi}\left(m^{\text {th }}\right)\right\rangle
\end{aligned}
\end{aligned}
$$

Excited States in even-mass Mg isotopes

Examples: 0+ states with different shapes

Revised Decay Scheme of ${ }^{28,29} \mathrm{Na}$ and New Levels in ${ }^{28,29} \mathrm{Mg}$

Enlargement of the magnetic field by magnet

static magnet to preserve polarization

