Various structures of the neutron-rich nucleus  $^{31}$ Mg investigated by  $\beta$ – $\gamma$  spectroscopy of spin-polarized  $^{31}$ Na

Hiroki Nishibata

Nuclear Spectroscopy Laboratory, RIKEN

PhD work at Osaka Univ.

- Applications of spin polarization to nuclear structure study.
- Unique method to assign spin-parity of excited levels based on  $\beta$ - $\gamma$  spectroscopy of spin-polarized Na isotopes.
- Investigation of nuclear structure of their daughters, i.e., Mg isotopes.

# Physics motivation

### Deformed ground states of neutron rich nuclei with N~20



### Large-scale Shell Model calculations

SDPF-U-MIX interaction model space **n: sd-pf**, p: sd

Caurier et al., Phys.Rev. C 90 (2014) 014302

across the N=20 "shell gap"



FIG. 5. (Color online) The gap between the 0p-0h and the 2p-2h configurations at N=20, without correlations (squares) and including correlations (circles). Nuclei close to or below the zero line are candidates to belong to the island of inversion.

- Nuclear correlations pull down the (2p-2h) level energies, and in some cases they become lower than the normal (0p-0h) level energies.
- The existence of islands of inversion or deformation are explained as the result of the competition between
  - (1) the spherical mean field and
  - (2) nuclear correlations which favor the deformed configurations.

### Shape coexistence

competition between spherical mean field and nuclear correlation which drives deformation



investigation of shape coexistence in the low excitation energy region



comparison of the experimental and theoretical levels on the level-by-level basis

Today's talk:  $^{31}Mg$  (N=19)

### Various structures in <sup>31</sup>Mg

predicted by anti-symmetrized molecular dynamics plus generator coordinate method (AMD+GCM)

With assuming neither deformation nor mean field, this theory predicts both collective structures and single-particle structures in low excitation energy region.

The 1/2+ ground state is successfully predicted.

shape coexistence in <sup>31</sup>Mg

M. Kimura, Phys. Rev. C 75(2007)041303(R)



### Discovery history of <sup>31</sup>Mg levels





### no spin-parity assignments

- D. Guillemaud-Mueller et al., Nucl. Phys. A426 (1984) 37
- G. Klotz et al., Phys. Rev. C 47 (1993) 2502



Discovery history of <sup>31</sup>Mg levels



### Adopted levels in <sup>31</sup>Mg by NNDC (updated in 2013)

Most of the spins and parities are unassigned, except for the 1/2+ ground state.



Firm spin-parity assignments are essential to understand the structure of <sup>31</sup>Mg.

Our method uses spin-polarized <sup>31</sup>Na to unambiguously assign the spins and parities of the levels in <sup>31</sup>Mg.

# Principle of the measurement and Experiment

## How to assign spin-parity of <sup>31</sup>Mg states



angular distribution of  $\beta$ -rays from polarized nucleus

#### allowed transition

$$W(\theta) \cong 1 + AP\cos\theta$$

A: asymmetry parameter of  $\beta$ -decay

*P* : spin polarization of parent nucleus

 $\theta$ : emission angle of  $\beta$ -rays with respect to polarization axis



in the case

$$A=-1$$
,  $P=0.5 \implies W(180^{\circ}) / W(0^{\circ}) = 3$ 

### Asymmetry parameter A

The asymmetry parameter *A* is a constant depending on the daughter state spin value.

### allowed transition

$$A(I_i, I_f) \begin{cases} = \frac{I_i}{I_i + 1} & \text{(for } I_f = I_i + 1) \\ \simeq \frac{-1}{I_i + 1} & \text{(for } I_f = I_i) \\ = -1 & \text{(for } I_f = I_i - 1) \end{cases}$$

 $I_i$ : the parent spin  $I_{\rm f}$ : the daughter state spin

### verv discrete values

| $I_i^{\pi}$         | $I_f^{\pi}$         |      |
|---------------------|---------------------|------|
| ( <sup>31</sup> Na) | ( <sup>31</sup> Mg) | Α    |
| 3/2+                | 5/2+                | +0.6 |
|                     | 3/2+                | -0.4 |
|                     | 1/2+                | -1.0 |



experimental A spin of  $^{31}$ Mg state parity = + for allowed transitions

### How to measure asymmetry parameter A



AP-values are measured freely from instrumental asymmetry.

$$AP = \frac{\sqrt{R}-1}{\sqrt{R}+1} \quad (R = \frac{N_{L+}/N_{R+}}{N_{L-}/N_{R-}})$$

P is common for all β-transitions and can be determined by comparing two transitions.

### Polarized <sup>31</sup>Na beam at TRIUMF in Canada

### Target fragmentation:

500 MeV 10  $\mu$ A proton beam with UCx target



### <sup>31</sup>Na+ ion beam intensity:

- ~ 800 pps (extracted), 28keV
- ~ 200 pps (after polarizer)



### Polarizer at ISAC TRIUMF



### **Detector Setup**



8 x (HPGe +2 plastic)
3 neutron TOF counters

 $\beta$ -detection efficiency: 15%

γ-detection efficiency: 2.9% @1333keV n-detection efficiency: 0.2%@2MeV



# **Experimental Results**

 $\beta$ – $\gamma$  measurement: <sup>31</sup>Na $\rightarrow$  <sup>31</sup>Mg

### Determination of polarization P





$$I_{0.673}^{\pi} = 3/2 + \implies A_{0.673} = -0.4$$
  
 $I_{2.244}^{\pi} = 1/2 + \implies A_{2.244} = -1.0$ 

$$A_{0.673}P = -0.11(1) \implies P = 28(3) \%$$
 $A_{2.244}P = -0.33(1) \implies P = 33(1) \%$ 
 $P = 32(1)\%$ 

### Spin-parity assignments of <sup>31</sup>Mg levels

experimental AP values and polarization P = 32(1)%





5 levels are firmly assigned!

The 50 keV level was assigned as 3/2+ for the first time.

### Decay scheme of $^{31}Na \rightarrow ^{31}Mg$



# Comparison with predictions by Antisymmetrized Molecular Dynamics (AMD+GCM) theory

### Comparison of energy levels



### <u>Summary</u>

- We confirmed three types of rotational bands and spherical states.
- This is the experimental evidence of the coexistence of various structures.



### Collaborators of TRIUMF experiment S1391 (Aug. 2014)

### Osaka University, Japan

- H. Nishibata, T. Shimoda, A. Odahara, S. Morimoto, S. Kanaya, Y. Yagi,
- H. Kanaoka

### TRIUMF, Canada

M. Pearson, C. D. P. Levy



Thank you for your attention.

End of presentation

### **Optical Pumping**

### alkali atom

### without hyperfine int.



atomic polarization

### with hyperfine int.



To achieve high polarization we need two laser beams.

### How to assign spin-parity of <sup>31</sup>Mg states





β-branch: 1%,  $\gamma$ -detection efficiency 1%, 24 hrs accumulation time

### K=1/2 rotational bands in <sup>31</sup>Mg





Positive-parity states

Negative-parity states

$$a = -0.8$$
  $^{31}Mg$   $K=1/2+$ 

$$a = -4.4$$





a: decoupling parameter

# $^{31}$ Mg K=1/2 rotational bands Positive 1/2+[200] $^{+0.4 < \beta < +0.6}$ Negative 1/2-[330] $^{+0.3 < \beta < +0.4}$



### K=1/2 rotational bands in <sup>31</sup>Mg





Positive-parity states

Negative-parity states

 $^{31}Mg$ 

$$a = -0.8$$

$$a = -4.4$$

Decoupling parameter a depends on the orbit occupied by the unpaired nucleon.



Configuration could be estimated from the K=1/2 rotational band observed in <sup>25</sup>Mg.



from the ordering of spins and energy difference between states

### rotational motion in odd-A nuclei

z: symmetry axis

 $K (= \Omega)$ 

*j*: particle angular momentum

**R**: rotational angular momentum

**K**: projection of the total angular momentum on the symmetry axis

*I*: total angular momentum



Litherland et al., Can J. Phys. 36 (1958) 378

### K=1/2 rotational bands in <sup>31</sup>Mg



Positive-parity states

Negative-parity states

$$a = -0.8$$
  $^{31}Mg$   $K = 1/2 +$ 

$$a = -4.4$$



 $K^{\pi}[Nn_{\tau}\Lambda]$ 



Values of decoupling parameter a
Is in good agreement with each other.

 $^{31}$ Mg K=1/2 rotational band Positive 1/2+[200]Negative 1/2-[330]  $K^{\pi}$ : projection of the total angular momentum on the symmetry axis

N: principal quantum number

 $n_z$ : number of nodes in the wave function in the z direction

∴ projection of the orbital angular momentum on the symmetry axis

# Nilsson diagrams for <sup>31</sup>Mg



# β-delayed neutrons



# levels above S<sub>n</sub>



g.s. ———

 $^{31}Mg$ 

Analysis in progress

### Comparison of logft values

between experimental results and AMD+GCM calculation



# How is the level scheme of 31Mg revised?

#### **NNDC** in 2013

Present work (TRIUMF experiment S1391 in 2014)





## spin-parity assignment of the levels at 1.436 and 0.942 MeV



#### (1) 1.436-MeV level

| $\overline{E_{\gamma}}$ | $E_i  ightarrow E_f$            | $I_{\rm exp}$ | $I^{\pi}(1.436 \text{ MeV})$ | $\sigma\lambda$ | $T_{W_{\sigma}}(\sigma\lambda)$ | $I_{ m W.e.}$         |
|-------------------------|---------------------------------|---------------|------------------------------|-----------------|---------------------------------|-----------------------|
| (keV)                   | (MeV)                           | (relative)    | 1 (1,133,1,13)               | • • •           | (s)                             | (relative)            |
| 2244                    | $2.244 \rightarrow \text{g.s.}$ | 1             |                              | M1              | $2.0 \times 10^{-15}$           | 1                     |
| 808                     | $2.244 \rightarrow 1.436$       | 0.03(2)       | $7/2^{-}$                    | E3              | $9.4 \times 10^{-5}$            | $2.1 \times 10^{-11}$ |
|                         |                                 | , ,           | $5/2^{-}$                    | M2              | $9.1 \times 10^{-9}$            | $2.1 \times 10^{-7}$  |
|                         |                                 |               | $1/2^{-}, 3/2^{-}$           | E1              | $1.3 \times 10^{-15}$           | $6.7 \times 10^{-1}$  |

hindrance factor of E1 :  $^{\sim}10^{-2}$  from 2.244 ---> 0.221 MeV (1/2+) (3/2-)



#### (2) 0.942-MeV level

| $\overline{E_{\gamma}}$ | $E_i 	o E_f$                    | $I_{\rm exp}$ | $I^{\pi}(0.942 \text{ MeV})$ | $\sigma\lambda$ | $T_{W.e.} (\sigma \lambda)$ | $I_{ m W.e.}$         |
|-------------------------|---------------------------------|---------------|------------------------------|-----------------|-----------------------------|-----------------------|
| (keV)                   | $(\mathrm{MeV})$                | (relative)    |                              |                 | (s)                         | (relative)            |
| 892                     | $0.942 \rightarrow 0.50$        | 1             | 7/2-                         | M2              | $5.6 \times 10^{-9}$        | 1                     |
| 942                     | $0.942 \rightarrow \text{g.s.}$ | 0.8(3)        | $7/2^{-}$                    | E3              | $3.2{	imes}10^{-5}$         | $1.9 \times 10^{-4}$  |
| 892                     | $0.942 \rightarrow 0.50$        | 1             | $1/2^-,3/2^-,5/2^-$          | E1              | $9.7 \times 10^{-16}$       | 1                     |
| 942                     | $0.942 \rightarrow \text{g.s.}$ | 0.8(3)        | $5/2^{-}$                    | M2              | $3.4 \times 10^{-6}$        | $2.9 \times 10^{-10}$ |
|                         |                                 |               | $1/2^-, 3/2^-$               | E1              | $8.2 \times 10^{-16}$       | $1.2{	imes}10^{0}$    |

## spin-parity assignment of the level at 1.029 MeV



| $\overline{E_{\gamma}}$ | $E_i \to E_f$                   | $I_{\rm exp}$ | $I^{\pi}(1.436 \text{ MeV})$ | $\sigma\lambda$ | $T_{W.e.} (\sigma \lambda)$ | $I_{ m W.e.}$         |
|-------------------------|---------------------------------|---------------|------------------------------|-----------------|-----------------------------|-----------------------|
| (keV)                   | (MeV)                           | (relative)    |                              |                 | (s)                         | (relative)            |
| 2244                    | $2.244 \rightarrow \text{g.s.}$ | 1             | _                            | M1              | $2.0 \times 10^{-15}$       | 1                     |
| 1215                    | $2.244 \to 1.029$               | 0.13(3)       | $7/2^{-}$                    | E3              | $5.4 \times 10^{-6}$        | $3.6 \times 10^{-10}$ |
|                         |                                 |               | $5/2^{-}$                    | M2              | $1.2 \times 10^{-9}$        | $1.6 \times 10^{-6}$  |
|                         |                                 |               | $1/2^-, 3/2^-$               | E1              | $3.8 \times 10^{-16}$       | $5.1 \times 10^{0}$   |

hindrance factor of E1 :  $^{\sim}10^{-2}$  from 2.244 ---> 0.221 MeV (1/2+) (3/2-)



# No such high-energy $\gamma$ -rays were observed.



Enlarged  $\beta$ - $\gamma$  coincidence spectrum for <sup>31</sup>Mg gated by  $\beta$  rays with more than 8 MeV indicated by solid line and the expected spectrum from the level scheme of Ref. [KLO93] shown in the dashed line.

Detection efficiency with  $\beta$ -gate is taken into account.

# In the case of cascade feeding

Deduced A from  $\beta$ - $\gamma$  coincidence is affected by the feeding from upper levels.



measured from  $\beta$ - $\gamma_1$  coincidence

$$A_1^{\gamma} = A_2 \times \frac{I_{\gamma_3}}{I_{\gamma_1}} + A_1 \times \frac{I_{\beta_1}}{I_{\gamma_1}},$$
 known unknown



$$A_1 = A_1^{\gamma} \times \frac{I_{\gamma_1}}{I_{\beta_1}} - A_2 \times \frac{I_{\gamma_3}}{I_{\beta_1}}.$$

# Achieved polarization

Phil Levy @TRIUMF

<sup>8</sup>Li: 80%, <sup>9</sup>Li: 56%, <sup>11</sup>LI: 55%,

<sup>20</sup>Na: 57%, <sup>21</sup>Na: 56%, <sup>26</sup>Na: 55%,

<sup>27</sup>Na: 51%, <sup>28</sup>Na: 45%,

<sup>28</sup>Na: 28%, <sup>29</sup>Na: 36%,

<sup>30</sup>Na: 31%, <sup>31</sup>Na: 32%

Corrected for spin-relaxation K. Minamisonno et al.,

Nucl. Phys. A746(2004)673c

Uncorrected for spin-relaxation, attenuation due to solid angle

# Spin Relaxation

Pt 
$$B_0 = 0.5 \text{ T}$$
  
<sup>20</sup>Na 22.0(19) s  
<sup>26</sup>Na 0.78(8) s

Korringa's relation  $T_1 \times T \propto (Ih/\mu)^2$ 

<sup>30</sup>Na 600 ms 48 ms <sup>31</sup>Na 400 ms 17 ms



Figure 1: Time spectra of <sup>20</sup>Na polarization in several catchers.

K. Minamizono et al. Hyperfine Interactions 159, 261 (2004)

# <sup>31</sup>Na β-decay



# TRIUMF Mass separator

**TRIUMF Mass separator** 

$$\Delta M/M \sim 1/10000$$

 $^{31}$ Na- $^{31}$ Mg  $\Delta$ M/M  $\sim$  1/1825

 $^{31}$ Na- $^{31}$ Al  $\Delta$ M/M  $\sim$  1/1050

## energy (Doppler) broadening of the neutralized beam



multiple collisions with Na atoms in the neutralizer

## Beam tuning

# 共鳴点のサーチ

Na cellのvoltage をかえる





## Doppler-shift tuning

deceleration bias (Na vapor cell) tuning to adjust ion beam velocity so as to meet the Doppler shift

## beta-decay asymmetry



absorption line







## Comparison with shell model calculation



G. Neyens et al., Phys. Rev. Lett. 94, 022501(2005)

M. Kimura, Phys. Rev. C75, 041302(R) (2007)

# spin-parity of the ground state in <sup>31</sup>Mg: understanding from the shell model



## Negative-parity states in <sup>31</sup>Mg

#### Lifetime measurement in $^{31}$ Na $\beta$ decay



Fig. 2. A partial level scheme of <sup>31</sup>Mg and preliminary level lifetimes established in this work, except for the 51 keV level, which is taken from [2]. The suggested spin/parity assignments for the excited levels and transition multipolarities are model dependent [2] although supported by the observed transition rates.





BaF<sub>2</sub> detector

H. Mach et al., Eur. Phys. J. A 25 s01, 105 (2005).

# anti-symmetrized molecular dynamics plus generator coordinate method (AMD+GCM)

#### AMD Antisymmetrized Molecular Dynamics

Reasonably describes cluster states such as <sup>12</sup>Be





Y. Kanada-En'yo et al., Phys. Rev. C 68, 014319 (2003) A Slater determinant of single particle wave packets.

$$\Phi_{\rm int} = \frac{1}{\sqrt{A!}} \det \{ \varphi_i(\mathbf{r}_j) \}$$

$$\varphi_i(\mathbf{r}) = \phi_i(\mathbf{r}) \cdot \chi_i \cdot \xi_i$$

spatial: 
$$\phi_i(\mathbf{r}) = \exp\{-(\mathbf{r} - \mathbf{Z}_i)\mathbf{M}(\mathbf{r} - \mathbf{Z}_i)\}$$

spin: 
$$\chi_i = \alpha_i \chi_{\uparrow} + \beta_i \chi_{\downarrow}$$

isospin: 
$$\xi_i = \text{proton or neutron}$$

$$\hat{H} = \hat{T} - \hat{T}_g + \hat{V}_{Gogny} + \hat{V}_{Coulomb}$$

**GCM** Generator Coordinate Method

treats collective motion

#### Theoretical Framework of AMD+GCM

#### **Wave function of AMD**

#### **Variational wave function:**

The parity is projected before the variation.

$$\Phi^{\pi} = \hat{P}^{\pi} \Phi_{\rm int}$$

#### **Intrinsic wave function:**

A Slater determinant of single particle wave packets.

$$\Phi_{\rm int} = \frac{1}{\sqrt{A!}} \det \{ \varphi_i(\mathbf{r}_j) \}$$

$$\varphi_i(\mathbf{r}) = \phi_i(\mathbf{r}) \cdot \chi_i \cdot \xi_i$$

spatial: 
$$\phi_i(\mathbf{r}) = \exp\{-(\mathbf{r} - \mathbf{Z}_i)\mathbf{M}(\mathbf{r} - \mathbf{Z}_i)\}$$

spin: 
$$\chi_i = \alpha_i \chi_{\uparrow} + \beta_i \chi_{\downarrow}$$

isospin:  $\xi_i = \text{proton or neutron}$ 

#### **Variational parameters:**

size and deformation of Gaussian  $\ \mathbf{M}$  :

3x3 real sym. matrix

centroinds of Gaussian  $\mathbf{Z}_i (i = 1,...,A)$ :

complex 3d vectors

direction of spin  $\alpha_i$  and  $\beta_i$  (i=1,...,A):

complex numbers

#### **Variation after parity projection**

#### Hamiltonian and energy:

$$\hat{H} = \hat{T} - \hat{T}_g + \hat{V}_{\text{Gogny}} + \hat{V}_{\text{Coulomb}}$$

$$E_{MK}^{J\pi} = \langle \Phi_{MK}^{J\pi} | \hat{H} | \Phi_{MK}^{J\pi} \rangle / \langle \Phi_{MK}^{J\pi} | \Phi_{MK}^{J\pi} \rangle$$

#### **Frictional cooling method:**

$$\dot{X}_i = (\mu + i\nu)c_{ij}\frac{\partial E_{MK}^{J\pi}}{\partial X_i}$$

### Ang. Mom. Proj. and GCM

#### Ang. Mom. Proj.:

$$\Phi_{MK}^{J\pi}(m^{\text{th}}) = \hat{P}_{MK}^{J} \Phi^{\pi}(m^{\text{th}})$$

#### GCM:

$$\Psi_{lpha}^{J\pi}=\sum_{m=1}^{n}f_{m}^{lpha}\Phi_{MK}^{J\pi}(m^{ ext{th}})$$

$$(H_{mm'} - E^{\alpha} N_{mm'}) f_{m'}^{\alpha} = 0$$

$$H_{mm'} = \langle \Phi_{MK}^{J\pi}(m^{\text{th}}) | \hat{H} | \Phi_{MK}^{J\pi}(m'^{\text{th}}) \rangle,$$

$$N_{mm'} = \langle \Phi_{MK}^{J\pi}(m^{\text{th}}) | \Phi_{MK}^{J\pi}(m'^{\text{th}}) \rangle$$

## **Excited States** in even-mass Mg isotopes

Examples: 0+ states with different shapes





 $\gamma$  rays & 9 energy levels Spins & parities of 4 levels



 $\gamma$  rays & 1 energy levels Spins & parities of 7 levels

# Enlargement of the magnetic field by magnet



# static magnet to preserve polarization

