Measurements of Collins Asymmetries in e^+e^- annihilations at BABAR

Fabio Anulli

INFN Sezione di Roma

on behalf of the BABAR Collaboration

22nd International Spin Symposium University of Illinois and Indiana University, September 25-30, 2016

Collins Fragmentation Function

Fragmentation Functions (FFs)

- ☑ dimensionless and universal functions
- ✓ non-perturbative information
- ✓ describe the final state particles in hard processes
- ✓ dependence on

$$z = 2E_h / \sqrt{s}$$
, P_{\perp} , and s_q

$$D_{h}^{q\uparrow}\left(z,\mathbf{P}_{\perp};s_{q}\right) = D_{1}^{q}\left(z,P_{\perp}\right) + \underbrace{H_{1}^{\perp q}\left(z,P_{\perp}\right)s_{q}\cdot\left(\mathbf{k}_{q}\times\mathbf{P}_{\perp}\right)}_{ZM_{h}}$$

- Could arise from a spin-orbit coupling
- Leads to a modulation in the angular distribution of final state particles (Collins Effect or Collins asymmetry)
- H_1^{\perp} is the polarized fragmentation function or Collins FF, describing the fragmentation of a transversely polarized quark into a spinless (or unpolarized) hadron h
- J. C. Collins, Nucl. Phys. **B 396**, 161 (1993)
- **Chiral-odd** function, ideal to access the chiral-odd parton distribution functions in Semi-Inclusive Deep Inelastic Scattering (SIDIS)

Use Collins FF to extract Transversity

SIDIS: Semi Inclusive Deep Inelastic Scattering

Factorization theorem:

$$\int_{\mathbb{R}^{+}}^{h} \sigma^{ep \to ehX} = \sum_{q} DF \times \sigma(eq \to eq) \times FF$$

$$\int_{\mathbb{R}^{+}}^{h} \sigma \propto \sin(\phi_{h} + \phi_{s}) h_{1}(x_{B}) \otimes H_{1}^{\perp}(z_{1})$$

$$\sigma \propto \sin(\dot{\phi}_h + \phi_s) h_1(x_B) \otimes H_1^{\perp}(z_1)$$

Transversity function

SIDIS

- Unpolarized lepton beam off transversely polarized nucleon target
 - non-zero Collins effects
 - spin direction known
 - two chiral-odd functions

Transversity PDF & Collins FF

Global analysis of SIDIS (HERMES & COMPASS) and e+e- (BELLE, BABAR, BESIII) data

==> simultaneous determination of Transversity(h₁) and Collins functions (CFF).

 $e^{+}e^{-} \rightarrow q\overline{q} \rightarrow h_{1}h_{2}X \quad (q = u,d,s)$ $\sigma \propto \cos(\phi_{i})H_{1}^{\perp}(z_{1}) \otimes H_{1}^{\perp}(z_{2})$

e⁺e⁻ annihilation

• γ^* (spin-1) goes to spin-1/2 q and q - Two Collins functions contribute to the cross section

Collins effect in di-hadron correlations

$$e^+e^- \rightarrow h_1h_2X$$
 ($h_i = \pi$, K spinless hadrons)

- quark spin direction unknown
 - ⇒ single-spin asymmetry vanishes
- They have a polarization component transverse to the quark direction
- ⇒ Charged hadrons detected in opposite jets, correlated to the original quark-antiquark pair:

measure cosine modulation of the observed di-hadron yield

Reference frames

Collins effect in di-hadron correlations

$$e^+e^- \rightarrow h_1h_2X$$
 ($h_i = \pi$, K spinless hadrons)

- quark spin direction unknown
 - ⇒ single-spin asymmetry vanishes
- They have a polarization component transverse to the quark direction
- ⇒ Charged hadrons detected in opposite jets, correlated to the original quark-antiquark pair:

measure cosine modulation of the observed di-hadron yield

Reference frames

2φ₀ Hadronic-plane or Second hadron momentum RF (RF0)

Collins effect in di-hadron correlation

Detection of hadron pairs with same or opposite charge sensitive to different combination of **favored** and **disfavored** FFs

- favored FF: one of the parent quarks matches a valence quark in the hadron, • i.e.: $u \rightarrow \pi^+, d \rightarrow \pi^-, s \rightarrow K^-, \dots$
- **disfavored FF:** no such match, i.e. $d \rightarrow \pi^+, u \rightarrow \pi^-, s \rightarrow K^-, s \rightarrow \pi^{\pm}, \dots$

Similarly for Unlike-sign Kaon pairs:

Extraction of asymmetry parameters from data

Collins Asymmetries

extracted from fit to the normalized azimuthal distribution

$$R_{\alpha} = \frac{N(\phi_{\alpha})}{\langle N_{\alpha} \rangle} = a + \mathbf{b} \cdot \cos(\phi_{\alpha})$$

- unpolarized contribution is flat
- Collins FF contained in the cosine moment b
- The MC generator does not include polarized FF as the Collins FF
 - observed modulation in MC sample produced by detector acceptance
 - correction of these effects with MC would bring to too large systematic uncertainties
- Collins effect not sensitive to electric charge
 - U and L distribution coincident in MC
 - slightly different in data due different contribution of favored and unfavored FF

Double Ratios

- **Double Ratio (DR)** of Unlike sign over Like sign pion pairs:
- eliminate the acceptance effects and the first order radiative effects
 - acceptances and radiative contributions do not depend on the charge combination of the pion pair;
 - approximation holds for small asymmetries.

$$\frac{R_{\alpha}^{U}}{R_{\alpha}^{L}} = \frac{N^{U}(\phi_{\alpha})/\langle N^{U}(\phi_{\alpha})\rangle}{N^{L}(\phi_{\alpha})\langle N^{L}(\phi_{\alpha})\rangle} \rightarrow P_{0} + P_{1} \cdot \cos(\phi_{\alpha})$$

Contains only the Collins effects and higher order radiative effects

MC: small deviation from zero ==> assigned as a systematic error

Uncorrected Asymmetry

Collins asymmetries in pion pair production

Measurement of Collins asymmetries from double ratios in $e^+e^- \to \pi^+\pi^- X$ have been performed by Belle (PRD78,032011, Erratum PRD 86, 039905) and *BABAR* at Q²~110 GeV², and by BESIII (PRL 116, 042001) at Q²~13 GeV²

- Collins asymmetry measured as function of:
 - 6×6 bins of pion fractional energy
 - 4×4 bins of (p_{t1},p_{t2}) in RF12
 - 9 bins of pto in RFO
 - asymmetry measured also vs. $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ and $\sin^2\theta_2/(1+\cos^2\theta_2)$

$BABAR \pi\pi$ results and global fits

Extraction of the Transversity PDF and Collins FF combining SIDIS and e^+e^- data

Anselmino et al: arXiv:1510.05389

Comparison between old fit (no BABAR data available) with new fit

- Fit uncertainties significantly reduced in the new analysis
- Good consistency for the transversity function
- The differences seen for the Collins FF are mainly due to the different parametrization used:
 - old fit: fav. and dis. FFs have the same dependency on z, and could differ only for a renormalization constant
 - new fit: the fav. and dis. FFs are left uncorrelated

Collins asymmetries in KK and $K\pi$ pairs

BABAR: PRD 92, 111101(R) (2015)

- Goal: Simultaneous measurement of Collins Asymmetry for charged hadron pairs: KK, $K\pi$, and $\pi\pi$
- Analysis strategy:
 - Perform event and particle selections
 - Separate into $\pi\pi$, KK and $K\pi$ candidate sets and subdivide into Like and Unlike charge
 - Charged data set is the combination of U and L.
 - Measure azimuthal angle distributions for each set in both reference frames
 - Take the ratios of Unlike to Like and Unlike to Charged normalized distributions
 - Extract Collins Asymmetry from each set, as a function of fractional energies

Event and track selection

EVENT SELECTION

- Number of charged tracks > 2
- Selection of two jets topology: thrust > 0.8
- $|\cos\theta_{\text{thrust}}| < 0.6$
- Visible energy E_{vis} > 11 GeV
- Most energetic photon $E_{\gamma} < 2 \text{ GeV}$

Thrust axis: charged tracks + neutral candidates; direction chosen random

TRACK SELECTION

- Electrons and muons veto
- K and π in the Cherenkov det. acceptance region
- K/ π fractional energy z: 0.15 < z < 0.9
- Opening angle between the hadron and the thrust axis < 45°
- Qt<3.5 GeV, where Qt is the transverse momentum of the virtual photon in the two hadrons center-of-mass energy

• Simultaneous extraction of the asymmetries corrected for background contamination and K/π misidentification in each fractional energy interval

1. Background sources:

- Mainly $e^+e^- \rightarrow c\bar{c}$ events; smaller contribution from BB, $\tau^+\tau^-$ (assume $A_{BB}\sim A_{\tau}\sim 0$)
- Select D*-enhanced MC and data control samples to estimate the charm contribution
- Fit independently DRs of the three selected samples KK, $K\pi$, $\pi\pi$ in both the full sample and the D^* -enhanced sample \rightarrow obtain 6 measured asymmetries A^{meas}_{hh} , and $A^{D^*}_{hh}$, $(h, h' = \pi, K)$
- Determine from MC simulation the fractions of hadron pairs coming from signal (*uds*) and background events (cc, BB, $\tau^+\tau^-$)

2. K/π misidentification:

- Evaluate from MC the fraction that a given hadron pair is reconstructed as KK, $K\pi$, or $\pi\pi$ pair in each data sample
- 3. A system of 6 equations with 6 unknown parameters (asymmetries for signal and charm background)
- Solve the system of equations to extract all asymmetry parameters

$$A_{KK}^{meas} = F_{uds}^{KK} \cdot (\xi_{KK}^{(KK)} A_{KK} + \xi_{K\pi}^{(KK)} A_{K\pi} - \xi_{\pi\pi}^{(KK)} A_{\pi\pi}) + \\ F_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)} A_{KK} + \xi_{K\pi}^{(K\pi)} A_{K\pi} + \xi_{\pi\pi}^{(K\pi)} A_{\pi\pi}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{\pi\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)D^*} A_{KK} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)D^*} A_{\pi\pi}) + \\ f_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{$$

Results

Measured Collins asymmetries reported in (z_1, z_2) bins

15

- \bullet Asymmetry rises as a function of z: more pronounced for U/L
- \bullet A^{UL} KK asymmetry slightly higher than pion asymmetry for high z
- * KK asymmetry consistent with zero at lower z
- * ππ results consistent with previous BABAR analysis

A^{UL} and A^{UC} asymmetries strongly correlated as they are obtained from the same data sample
28 September 2016, Urbana
Fabio Anulli

Extraction of the Collins FF from BABAR kaon data

Anselmino et al., arXiv:1512.02252

Fitted function superimposed to BABAR data

- It uses the pion fav. and disfav. Collins FF extracted in arXiv: 1510.05389,
- It assumes a simplified parametrization for the corresponding kaon Collins FFs.

16

Test universality of Collins FF:

Calculate SIDIS single spin asymmetries from the fitted function and compare with data

28 September 2016, Urbana Fabio Anulli

Conclusions and perspectives

- BABAR is continuing the program of studying fragmentation processes, making use of the $\sim 500 \text{ fb}^{-1}$ of e^+e^- collisions at $\sim 10.6 \text{ GeV}$
- Collins asymmetries measured for charged hadron pairs in two-jet events.
 Measurements are made in two different reference frames.
 - Precise measurement of pion-pair asymmetries in fine bins of fractional energies and transverse momenta ⇒ PRD 90, 052003 (2014)
 - Simultaneous measurement of asymmetries for $\pi\pi$, πK , and KK pairs as a function of fractional energies \Rightarrow PRD 92, 111101(R) (2015)
 - First information on kaon Collins FF in e^+e^- data
 - Results consistent with theoretical predictions (e.g. PL **B** 659, 234 (2009))
- Global analyses of $e^+e^-(BABAR+Belle)$ and SIDIS asymmetries for pions allow extraction of the transversity PDF and the pion Collins FFs.
- πK and KK pairs results used to extract kaon Collins FF
 - consistency with HERMES and COMPASS data on kaons indicate the validity of universality of the Collins FF
- New results expected "soon".

Conclusions and perspectives

- BABAR is continuing the program of studying fragmentation processes, making use of the $\sim 500 \text{ fb}^{-1}$ of e^+e^- collisions at $\sim 10.6 \text{ GeV}$
- Collins asymmetries measured for charged hadron pairs in two-jet events. Measurements are made in two different reference frames.
 - Precise measurement of pion-pair asymmetries in fine bins of fractional energies and transverse momenta \Rightarrow PRD 90, 052003 (2014)
 - Simultaneous measurement of asymmetries for $\pi\pi$, πK , and KK pairs as a function of fractional energies \Rightarrow PRD 92, 111101(R) (2015)
 - First information on kaon Collins FF in e^+e^- data
 - Results consistent with theoretical predictions (e.g. PL B 659, 234 (2009))
- Global analyses of $e^+e^-(BABAR+Belle)$ and SIDIS asymmetries for pions allow extraction of the transversity PDF and the pion Collins FFs.
- πK and KK pairs results used to extract kaon Collins FF
 - consistency with HERMES and COMPASS data on kaons indicate the validity of universality of the Collins FF
- New results expected "soon"

BACKUP SLIDES

PEPII and the BABAR detector

The Collins Fragmentation Function

J.C. Collins Nucl.Phys.B396,161 (1993)

- Spin-dependent chiral-odd Fragmentation Function (FF)
- It is related to the probability that a transversely polarized quark will fragment into a spinless hadron

number density function:

$$D_{hq\uparrow} = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{\hat{k} \times \vec{P}_{h\perp} \cdot \vec{S}_q}{zM_h}$$
 unpolarized FF CollinsFF

First experimental evidence of non zero Collins FF for pions came from SIDIS experiments:

HERMES (PRL94,012002(2005))

e⁺e⁻ annihilations:

- not conclusive studies at LEP: DELPHI (Nucl.Phys.B79,554-556 (1999))
- direct evidence of non-zero Collins FF at KEKB: Belle (PRL96,232002(2006), PRD78,032011(2008))

BABAR $\pi\pi$ results compared to Belle and BESIII

Extraction of the Transversity PDF and Collins FF combining SIDIS and e^+e^- data

Comparison between different results obtained at different Q²:

- BaBar and Belle @ $Q^2 \sim 110 \; GeV^2$
- BESIII @ $Q^2 \sim 13 \text{ GeV}^2$

★ BaBar

BesIII

0 28 September 2016, 1 Problem

0.05

- BaBar and Belle results that fall in the larger BESIII z-bins are averaged taking into account the statistical and systematic uncertainties
- Good agreement between different data sets for low z
- BESIII larger asymmetries in the last z-bins: consistent with the prediction reported in arXiv:1505.05589
- Some tensions between BaBar and Belle for high z in the thrust frame (no BESIII data available)

Belle: PRD78, 032011 (2008) (Erratum: PRD 86, 039905)

BESIII: PRL 116, 042001 (2016)

- The experimental method assumes the thrust axis as qq direction
- This is only a rough approximation

Introduces dilution of asymmetry in RF12. Correct through MC study

No dilution effect in RF0

Opening angle between thrust axis and $q\bar{q}$ axis

28 September 2016, Urbana Fabio Anulli 23

- Simultaneous extraction of the asymmetries corrected for background (mainly charmed hadron decays, but also BB and $\tau+\tau-$) and K/π misidentification in each fractional energy interval
- Fit independently the double ratio distributions of the three selected samples KK, $K\pi$, $\pi\pi$

$$A_{KK}^{\text{meas}} = F_{uds} \cdot A_{KK}^{Collins} + \sum_{i} F_{i}^{KK} \cdot A_{KK}^{i}$$

1. Background sources:

- mainly from $e^+e^- \rightarrow c\bar{c}$ events (more than 30%); smaller contribution from BB, $\tau^+\tau^-$ (A_{BB}~A_{τ}~0)
- construct a D*-enhanced MC and data control samples to estimate the charm contribution

$$\begin{array}{c} \mathbf{D}^{*\pm} \longrightarrow \mathbf{D}^{0}\pi^{\pm}, \ \mathbf{D}^{0} \longrightarrow \mathbf{K}\pi, \ \mathbf{D}^{0} \longrightarrow \\ \mathbf{K}3\pi, \ \mathbf{D}^{0} \longrightarrow \mathbf{K}\pi\pi^{0}, \ \mathbf{D}^{0} \longrightarrow \mathbf{K}_{S}\pi \ \pi \end{array}$$

• The fractions $(F(f)_{\text{sig/bkg}}^{hh})$ of hadron pairs coming from signal (uds) and background events (cc, BB, $\tau^+\tau^-$) are obtained from MC simulation

$$A_{KK}^{\text{meas}} = F_{uds}^{KK} \cdot A_{KK}^{Collins} + F_{c\bar{c}}^{KK} \cdot A_{KK}^{charm}$$
$$A_{KK}^{D^*} = f_{uds}^{KK} \cdot A_{KK}^{Collins} + f_{c\bar{c}}^{KK} \cdot A_{KK}^{charm}$$

- Simultaneous extraction of the asymmetries corrected for background (mainly charmed hadron decays, but also BB and $\tau+\tau-$) and K/π misidentification in each fractional energy interval
- Fit independently the double ratio distributions of the three selected samples KK, $K\pi$, $\pi\pi$

$$A_{KK}^{\text{meas}} = F_{uds} \cdot A_{KK}^{Collins} + \sum_{i} F_{i}^{KK} \cdot A_{KK}^{i}$$

2. K/π misidentification:

• Evaluate from MC the fraction $(\xi_{hh}^{(hh)})$ that a given hadron pair is reconstructed as KK, $K\pi$, or $\pi\pi$ pair

$$A_{KK}^{\text{meas}} = F_{uds} \cdot \left(\sum_{nm} \xi_{nm}^{(KK)} \cdot A_{nm}^{Collins}\right) + F_{c\bar{c}}^{KK} \cdot \left(\sum_{nm} \xi_{nm}^{(KK)} \cdot A_{nm}^{charm}\right)$$

$$\xi_{\text{hh}} \text{ (hh)} \leftarrow \text{reconstructed hadron pairs}$$

$$\text{generated hadron pairs}$$

3. Solve the system of equations to extract all asymmetry parameters

25

$$A_{KK}^{meas} = F_{uds}^{KK} \cdot (\xi_{KK}^{(KK)} A_{KK} + \xi_{K\pi}^{(KK)} A_{K\pi} - \xi_{\pi\pi}^{(KK)} A_{\pi\pi}) + \\ F_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)} A_{KK} + \xi_{K\pi}^{(K\pi)} A_{K\pi} + \xi_{\pi\pi}^{(K\pi)} A_{\pi\pi}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{\pi\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)D^*} A_{KK} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)D^*} A_{\pi\pi}) + \\ f_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} - D^* A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} - D^* A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} - D^* A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{$$

Systematic uncertainties

A large number of systematic checks were done. The main contributions come from:

- MC uncertainties
- Particle identification (PID)
- Fit procedure
- Dilution method
- E_{vis} cut

Additional checks show negligible effects, such as:

- Beam polarization studies
- Asymmetry consistency between different data taking period
- Possible coupling between Collins and detector effect

Sum in quadrature of systematic uncertainties (absolute values)