QUARK ORBITALANGULAR MOMENTUM DISTRIBUTIONS

22ND INTERNATIONAL SPIN SYMPOSIUM

 SEPTEMBER 25-30, 2016 UIUC, USASimonetta Liuti
University of Virginia

Based @n

PHYSICAL REVIEN Dand orbital angular mome 3 and Simonetta Liuti. 22904 , USA

Abha Rajath, University of Virginia, Fisica, Centro de Investiga, México MSC 3D.

$$
\begin{aligned}
& \text { ansverse position } \\
& \text { asion for the off- } \\
& \text { a. We provide } \\
& \text { and }
\end{aligned}
$$ polarized targets.

Partonic OAM: Wigner Distributions

$$
L_{q}^{\mathcal{U}}=\int d x \int d^{2} \mathbf{k}_{T} \int d^{2} \mathbf{b}\left(\mathbf{b} \times \mathbf{k}_{T}\right)_{z} \mathcal{W}^{\mathcal{U}}\left(x, \mathbf{k}_{T}, \mathbf{b}\right) \quad \begin{aligned}
& \text { Hatta } \\
& \text { Lorce, Pasquini }, \\
& \text { Xiong, Yuan }
\end{aligned}
$$

Wigner Distribution

$$
\mathcal{W}^{\mathcal{U}}=\left.\frac{1}{2} \int \frac{d^{2} \boldsymbol{\Delta}_{T}}{(2 \pi)^{2}} e^{i \Delta_{T} \cdot b} \int d z^{-} d^{2} \mathbf{z}_{T} e^{i k z}\left\langle P-\Delta, \Lambda^{\prime}\right| \bar{q}(0) \gamma^{+} \mathcal{U}(0, z) q(z)|P, \Lambda\rangle\right|_{z^{+}=0}
$$

GTMDs

Fourier conjugate to $\Delta_{\mp}: \mathbf{b}=$ transverse position of the quark inside the proton
Fourier conjugate to k_{T} : $\mathbf{z}_{\mathrm{T}}=$ transverse distance traveled by the struck quark between the initial and final scattering

Which GTMD?
The quark-quark correlator for a spin $1 / 2$ hadron has been parametrized up to twist four in terms of GTMDs, TMDs and GPDs, in a complete way in: hadron

Stephan Meißner, ${ }^{a}$ Andreas Metz ${ }^{\text {b }}$ and Marc Schlegel ${ }^{c}$
${ }^{\text {a }}$ Institut für Theoretische Physik II, Ruhr-Universität Bochum,
Universitaetsstr. 150, 4 Temple University,
${ }^{\text {b }}$ Department of Physics, Temp PA 19122-6082, U.S.A.
Broad Street, Philadelp , Lab, VA 23606 , U.S.A.
Theory Ceferson Avenue, Newport 2. rub. de, metza@temple. edu,
12000 Jeffer

$$
\begin{aligned}
& \text { F }_{14} \\
& W_{\Lambda \Lambda^{\prime}}^{\gamma^{+}}=\frac{1}{2 P^{+}} \bar{U}\left(p^{\prime}, \Lambda^{\prime}\right)\left[\gamma^{+} F_{11}+\frac{i \sigma^{i+} \Delta_{T}^{i}}{2 M}\left(2 F_{13}-F_{11}\right)+\frac{i \sigma^{i+} \bar{k}_{T}^{i}}{2 M}\left(2 F_{12}\right)+\frac{i \sigma^{i j} \bar{k}_{T}^{i} \Delta_{T}^{j}}{M^{2}} F_{14} U(p, \Lambda)\right. \\
&=\delta_{\Lambda, \Lambda^{\prime}, F_{11}+\delta_{\Lambda,-\Lambda^{\prime}} \frac{-\Lambda \Delta_{1}-i \Delta_{2}}{2 M}\left(2 F_{13}-F_{11}\right)+\delta_{\Lambda,-\Lambda^{\prime}} \frac{-\Lambda \bar{k}_{1}-i \bar{k}_{2}}{2 M}\left(2 F_{12}\right)+\delta_{\Lambda, \Lambda^{\prime}} i \Lambda \frac{\bar{k}_{1} \Delta_{2}-\bar{k}_{2} \Delta_{1}}{M^{2}} F_{14}}^{2}
\end{aligned}
$$

Integral relation for OAM

$$
L_{q}=-\int_{0}^{1} d x \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}=-\int_{0}^{1} d x F_{14}^{(1)}
$$

Lorce, Pasquini, Xiong, Yuan Hatta, Yoshida
Meissner, Metz and Schlegel Ji, Xiong, Yuan

... another integral relation involving a twist 3 GPD

$$
\int_{0}^{1} d x x G_{2}=-\frac{1}{2} \int_{0}^{1} d x x(H+E)+\frac{1}{2} \int_{0}^{1} d x \tilde{H}
$$

A generalized Wandzura Wilczeck relation obtained using OPE for twist 2 and twist 3 operators for the off-forward matrix elements

Twist 3 GPDs

$$
G_{2} \rightarrow \tilde{E}_{2 T}+H+E
$$

Polyakov et al. Meissner, Metz and Schlegel, JHEP(2009)

$$
W_{\Lambda^{\prime} \Lambda}^{\gamma^{i}}=\frac{1}{2 P^{+}} \bar{U}\left(p^{\prime}, \Lambda^{\prime}\right)\left[\frac{\Delta_{T}^{i}}{M} G_{1}+\frac{i \sigma^{j i} \Delta}{M} \int G_{2} \frac{M i \sigma^{i+}}{P^{+}} G_{4}+\frac{\Delta_{T}^{i}}{P^{+}} \gamma^{+} G_{3}\right] U(p, \Lambda),
$$

Ji et al.: the twist 2 and twist 3 integral relations can both give "Ji" OAM
proton Spin Structure from Measurable Parton Distributions

Why?

Lorentz Invariance Relations (LIR)

- Based on the most general Lorentz invariant decomposition of the fully unintegrated quark-quark correlator, where the fields are located at different space-time positions, one finds relations between twist-3 GPDs and k_{T} moments of GTMDs
- LIRs are a consequence of there being a smaller number of independent unintegrated terms in the decomposition than the number of GTMDs

LIR for Orbital Angular Momentum

A. Rajan, A. Courtoy, M. Engelhardt, S.L., , arXiv:1601.06117

By studying in detail the k_{T} structure of GTMDs and twist 3 GPDs for a straight gauge link (Ji's definition) one can derive a generalized LIR (A. Rajan's talk)

$$
\frac{d}{d x} \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}=\widetilde{E}_{2 T}+H+E
$$

k_{T} moment of a GTMD
twist 3 GPD

Solving for the derivative one finds

$$
F_{14}^{(1)}=-\int_{x}^{1} d y\left(\tilde{E}_{2 T}+H+E\right) \Rightarrow-L_{q}=\int_{0}^{1} d x F_{14}^{(1)}=\int_{0}^{1} d x x G_{2}
$$

- F_{14} and $\tilde{E}_{2 T}$ give us similar information on the distribution in x of OAM! (our result)
- We confirm and corroborate the global OAM result deducible from Ji et al

Equations of Motion (EoM) relation

Now insert the EoM in the correlator for a longitudinally polarized proton
$\int \frac{d z^{-} d^{2} z_{T}}{(2 \pi)^{3}} e^{i x P^{+} z^{-}-i k_{T} \cdot z_{T}}\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(-z / 2)(\Gamma \mathcal{U} i \vec{D}+i \overleftarrow{D} \Gamma \mathcal{U}) \psi(z / 2)|p, \Lambda\rangle_{z^{+}=0}=0$

Replacing F_{14} with the LIR, we find

$$
x\left(\widetilde{E}_{2 T}+H+E\right)=x\left[(H+E)-\int^{1} \frac{d y}{y}(H+E)-\frac{1}{x} \widetilde{H}+\int_{x}^{1} \frac{d y}{y^{2}} \widetilde{H}\right]+\underbrace{(3)}
$$

Validation of Ji's Sum Rule: $J_{q}=L_{q}+\frac{1}{2} \Delta \Sigma_{q}$ through three

 independently measured quantities

Genuine twist three term for straight and staple gauge links

$\mathcal{M}_{\Lambda \Lambda^{\prime}}^{i}=\frac{1}{4} \int \frac{d z^{-} d^{2} z_{T}}{(2 \pi)^{3}} e^{i x P^{+} z^{-}-i k_{T} \cdot z_{T}}$

$$
\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}(-z / 2)\left[\left.(\vec{\partial}-i g A) \mathcal{U} \Gamma\right|_{-z / 2}+\left.\Gamma \mathcal{U}(\overleftarrow{\not \partial}+i g A)\right|_{z / 2}\right] \psi(z / 2)|p, \Lambda\rangle_{z^{+}=0}
$$

For a straight link (Ji) :

$$
[\cdots]_{z \rightarrow 0}=0 \quad \mathrm{G}^{(3)} \text { integrates to } 0
$$

For a staple link (Jaffe Manohar):

$$
[\ldots]_{z \rightarrow 0}=2 i \epsilon_{i j} \int_{0}^{1} d s \mathcal{U}_{0 \rightarrow s} v^{-} \gamma^{+} F^{+j}(z+s v) \mathcal{U}_{s \rightarrow 0}
$$

(same form as Matthias Burkardt's torque term)

Generalized Qiu Sterman term

$$
\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{J M}-\int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} F_{14}^{J i}=T_{F}(x, x, \Delta)
$$

50\% effect from lattice (M. Engelhardt, preliminary)

...even more preliminary

$L_{q}(x, 0,0)=x \int_{x}^{1} \frac{d y}{y}\left(H_{q}(y, 0,0)+E_{q}(y, 0,0)\right)-x \int_{x}^{1} \frac{d y}{y^{2}} \widetilde{H}_{q}(y, 0,0)$,

Abha Rajan et al., arXiv:1601.06117

How to measure all this

1. Future: GTMDs from "off-forward SIDIȘ",

$$
e p \rightarrow e^{\prime} \gamma \pi^{+} \pi^{-} p^{\prime}
$$

J.Qiu proposes only one diffractive pion
(ECT*, April 2016)

$$
\begin{gathered}
g_{\Lambda_{\gamma}^{\prime}, \Lambda_{N}^{\prime}, 0 ; \Lambda_{\gamma}, \Lambda_{N}, 0}=\sum_{\lambda, \lambda^{\prime}} \tilde{g}_{\Lambda_{\gamma}^{\prime}}^{\lambda^{\prime} \lambda_{\gamma}} \otimes A_{\Lambda_{N}^{\prime}, \lambda^{\prime}, \Lambda_{N}, \lambda}(x, \xi, t) \otimes F_{\lambda 0}^{\pi_{1}}(z) F_{\lambda^{\prime} 0}^{\pi_{2}}(v) \\
\Phi
\end{gathered}
$$

Developing helicity amplitude formalism for off forward SIDIS

$>$ To measure F_{14} one has to be in a frame where the reaction cannot be viewed as a two-body quark-proton scattering
$>$ In the CoM the amplitudes are imaginary \rightarrow UL term goes to 0 unless one defines two hadronic planes

2. Extracting twist three GPDs from DVCS, TCS, ...

We are developing an helicity amplitudes based formalism that allows us to separate out the various twist terms in a clean way, and connects to Meissner, Metz and Schlegel formalism
example

$$
\sigma^{U U}=\frac{\Gamma}{Q^{2}(1-\epsilon)}\left[F_{U U, T}+\epsilon F_{U U, L}+\epsilon \cos 2 \phi F_{U U}^{\cos 2 \phi}+\sqrt{\epsilon(\epsilon+1)} \cos \phi F_{U U}^{\cos \phi}\right]
$$

$$
\begin{aligned}
F_{U U, T} & =2\left(F_{++}^{11}+F_{+-}^{11}+F_{-+}^{11}+F_{--}^{11}\right) \\
F_{U U, L} & =2 F_{++}^{00} \\
F_{U U}^{\cos \phi} & =\operatorname{Re}\left[F_{++}^{01}+F_{--}^{01}\right] \\
F_{U U}^{\cos 2 \phi} & =\operatorname{Re}\left[F_{++}^{1-1}+F_{+-}^{1-1}+F_{-+}^{1-1}+F_{--}^{1-1}\right]
\end{aligned}
$$

Twist 2
Twist 4
Twist 3
Photon helicity flip: transverse gluons

3. What can be done with the data so far: connection

 with $\mathrm{g}_{2}, \mathrm{~d}_{2}$$$
\underbrace{g_{2}(x)}_{t=3}=-\underbrace{g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(x)}_{g_{2}^{W W} \rightarrow \tau=2}+\underbrace{\left[\bar{g}_{2}^{t w 3}-\int_{x}^{1} \frac{d y}{y} \bar{g}_{2}^{t w 3}\right]}_{\tau=3}
$$

From OPE

$$
\begin{aligned}
& d_{2}=2 \int d x x^{2} g_{1}(x)+3 \int d x x^{2} g_{2}(x) \\
& d_{2}=2 \int d x x^{2}(H(x)+E(x))+3 \int d x x^{2} \tilde{E}_{2 T}(x)
\end{aligned}
$$

d_{2} measurements provide an independent normalization

Upcoming: more relations/observables (A. Rajan, M. Engelhardt, S.L.)

$$
\frac{d}{d x} \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} G_{11}=-\tilde{H}_{2 T}-\tilde{H} \text { Spin orbit correlation }
$$

Conclusions and Outlook

The connection we established through the new relations between (G)TMDs and GPDs, opens many interesting avenues:

- It allows us to study in detail the role of quark-gluon correlations, in a framework where the role of k_{T} and off-shellness, k^{2}, is manifest.
- OAM was obtained so far by subtraction (also in lattice). We can now both calculate OAM on the lattice (GTMD) and validate this through measurements (twist 3 GPD)
- Similarity with the Sivers effect where the function vanishes for a straight link
- Many more interesting new connections: with transverse spin, nuclei, spin orbit-term, and axial vector sector (g_{2})
- It provides an ideal setting to test renormalization issues, evolution etc...

