Spin polarized fuel in tokamak fusion reactors

with

D.C. Pace¹, M.J. Lanctot¹, G.L. Jackson¹, A.M. Sandorfi²

¹DIII-D National Fusion Facility at General Atomics ²Thomas Jefferson National Accelerator Facility

Presented at the 22nd International Spin Symposium September 28, 2016

Injecting spin polarized fuel in an existing tokamak would inform the possibility of enhanced future tokamaks

• Spin polarizing the fuel in the most favorable fusion reaction $D + T \rightarrow {}^{5}He \rightarrow \alpha + n (+17.6 \text{ MeV})$ yields up to a factor of 1.5 greater cross section for this reaction

In the power balance of a future tokamak reactor, a 50% increase in cross section leads to a 75% increase in fusion power

 The polarization survival should be testable in DIII-D by injecting spin polarized HD and ³He pellets and measuring the quantity and distribution of fusion products on the tokamak wall from

 $D + {}^{3}He \rightarrow {}^{5}Li \rightarrow \alpha + p$

Outline

- What is a tokamak?
- Nuclear physics of spin polarized fusion
- Implications for future reactors
- Testing spin polarization survivability in DIII-D

Tokamak = Toroidal Confinement by Magnetic Fields

- The toroidal guide field is produced by external coils
- The poloidal field is produced by driving current toroidally in the plasma
- Helically winding magnetic field lines trace out a flux surface
- The plasma particles are confined long enough to undergo fusion

DIII-D is a medium sized, but well diagnosed tokamak

- $B_T < 2.1 \text{ T}, I_p < 1.5 \text{ MA}$
- R = 1.6 m, a = 0.6 m
- H, D, or He Fuel
- Elect. Dens. ~ 5x10¹⁹/m³
- Elect. Temp. < 12 keV
- Ion Temp. < 18 keV
- 15 MW Neutral Beams
- 3 MW Electron Cyclotron Heating
- Discharge current flattop 5-10 s
- 1 discharge (shot) per 12-15 minutes

DIII-D tokamak (San Diego / USA)

ITER is the next step device being built in France

Pitch (polar) angle of fusion products relative to the magnetic field matters in a tokamak

- Pitch angle closer to 0 or 180 degrees: <u>passing</u> particle stays closer to magnetic field line and samples all of the flux surface
 - confined longer to give energy to thermal plasma
- Pitch angle closer to 90 degrees: <u>trapped particle has large</u> excursions from the flux surface and doesn't sample inboard.

Outline

- What is a tokamak?
- Nuclear physics of spin polarized fusion
- Implications for future reactors
- Testing spin polarization survivability in DIII-D

Reactor Performance can be Improved by Exploiting the Dependence of Fusion Cross-section on Spin Polarization

Spin Polarized Distribution: parallel to B

 $\int \sigma \rightarrow 1.5 \sigma_0 \qquad \begin{array}{c} 50\% \text{ fusion rate increase} \\ \text{for full polarization} \end{array}$

PSFC MIT (2012)

Studying the D + ³He Reaction Addresses the Physics Necessary for Application to D + T Reactions

$D + T \rightarrow {}^{5}He \rightarrow \alpha + n$ $D + {}^{3}He \rightarrow {}^{5}Li \rightarrow \alpha + p$

- Isospin (neutron/proton equivalence) is a very good quantum number, particularly at the low energies of particles in a tokamak
 - ⁵He and ⁵Li are mirror nuclei with nearly identical low-energy structure
 - D+T and D+³He reactions are mirror reactions with same spins and same nuclear physics

Polarization Leads to a Non-isotropic Fusion Cross-section

• Inject polarized fuel into a tokamak

$$D + {}^{3}He \rightarrow {}^{5}Li \rightarrow \alpha + p$$

parallel spins $\vec{D} \uparrow ^{-3}He \uparrow$:

antiparallel spins $\vec{D} \uparrow ^{-3}He \downarrow$:

$$\frac{d\sigma}{d\Omega_{cm}} = \left(\frac{d\sigma}{d\Omega}\right)_{0} \left\{\frac{9}{4}\sin^{2}\theta\right\}$$
$$\frac{d\sigma}{d\Omega_{cm}} = \left(\frac{d\sigma}{d\Omega}\right)_{0} \left\{\frac{1}{4}\left(1 + 3\cos^{2}\theta\right)\right\}$$

- Pitch angle (θ) of the charged fusion products relative to the magnetic field is skewed
 - parallel spins produce more trapped particles
 - anti-parallel spins produce more passing particles

• Angle-integrated fusion cross-section:

$$\sigma_{
m cm} = \sigma_0 \left\{ 1 + rac{1}{2} ec{P}_D^V \cdot ec{P}_{^3
m He}
ight\}$$

• Fully polarized fuel:

$$\left| \vec{P}_{D}^{V} \right| = 1$$
, $\left| \vec{P}_{3}_{He} \right| = 1$

- Resulting fusion rate is modified
 - both spins parallel to B:

 one spin parallel, the other anti-parallel to B:

$$\sigma_{\rm cm} = \sigma_0 \left\{ 1 + \frac{1}{2} \right\}$$

$$\sigma_{\rm cm} = \sigma_0 \left\{ 1 - \frac{1}{2} \right\}$$

Outline

- What is a tokamak?
- Nuclear physics of spin polarized fusion
- Implications for future reactors
- Testing spin polarization survivability in DIII-D

Spin Polarized Fuel can Benefit Fusion Reactors by Improving either Power Generation or α -particle Confinement*

Improving power generation

- D and T polarized // B
- 100% polarization produces fusion rate increase of 50%
- α -particle birth pitch angle $N(\theta_{\alpha}) \sim \sin^2(\theta_{\alpha})$

Enhanced α-particle confinement

- D polarized \perp B
- N(θ_{α}) ~ 1 + 3 cos²(θ_{α})
- larger passing α -particle population

D.C. Pace, et al., J. Fusion Energ., S.P.Smith et al./22nd International Spin Symposium/September 28, 2016 DOI 10.1007/s10894-015-0015-4 (2016)

Spin Polarized Fuel can Makeup for Magnetic Field Degradation in Superconducting Tokamaks

• Recast the fusion rate in terms of magnetic field

$$R = n_D n_T V_{\text{plasma}} \langle \sigma v \rangle$$
$$= \frac{\beta^2 B^4}{4\mu_o^2 T^2} V_{\text{plasma}} \langle \sigma v \rangle$$

- 50% increase in reaction rate is equivalent to as much as a 11% increase in magnetic field for ITER
 - improve Q at targeted magnetic field
 - reach Q = 10 even if facing toroidal field degradation

A.M. Sandorfi and A. D'Angelo, Springer Proc. Phys. 187 (2016) 115

Increase in Fusion Power Scales Faster than the Reaction Rate

- Fusion alphas heat a reactor through collisional damping on electrons and ions
- Increased fusion alpha heating increases the plasma temperature
- Increased plasma temperature further increases fusion rate until a new power balance is reached
- Fusion rate increase of 1.5 → fusion power increase of 1.75

Polarized Fuel has the Potential to Significantly Reduce Reactor Cost

- Fuelling a 500 MW plasma in ITER
 - 5 mm outer diameter pellets of separate
 D and T injected at 7 Hz
 - 2000 mol/day of each species at 100% polarization
- If these quantities of polarized fuel are available
 - equivalent to ~15% magnetic field increase
 - tokamak reactor cost scales as B²
 - reactor cost is reduced by ~30%

A.M. Sandorfi and A. D'Angelo, Springer Proc. Phys. 187 (2016) 115

Next Step in SPF Research is to Demonstrate that the Fuel Remains Polarized Longer than a Confinement Time

- SPF benefits require that polarization persists in the tokamak long enough for fusion to occur
 - energy splitting between polarization states is minuscule: 10^{-10} keV << T_{ion}
- Many depolarization mechanisms have been explored, but survival is expected (collisions and recycling are small depolarization mechanisms)*
 - Recent ITER modeling predicts that wall recycling will be negligible for its hot plasma conditions
- We propose that polarization survival should be tested in current devices with current polarization techniques

*R.M. Kulsrud, H.P. Furth, E.J. Valeo and M. Goldhaber, Phys. Rev. Lett. 49, 1248 (1982) R.M. Kulsrud, E.J. Valeo and S. Cowley, Nucl. Fusion 26, 1443 (1986)

Outline

- What is a tokamak?
- Nuclear physics of spin polarized fusion
- Implications for future reactors
- Testing spin polarization survivability in DIII-D

- Prepare polarized deuterium with existing Jefferson Lab facilities: solid $H\vec{D}$ pellets
 - diffuse 200 400 atm HD into shells (Inertial Confinement Fusion ICF type from General Atomics)
 - cool gas to reach solid state
 - polarize both H and D
 - spin transfer $H \rightarrow D$ for maximum D polarization
 - fired from 2 K pellet launcher at DIII-D

 $H\vec{D} \uparrow + {}^{3}\vec{H}e \uparrow$ $H\vec{D} \downarrow + {}^{3}\vec{H}e \uparrow$

- Prepare polarized deuterium with existing Jefferson Lab facilities: solid $H\vec{D}$ pellets
 - diffuence and the stability of the sta
 - in nuclear physics experiments
 - spin transfer $H \rightarrow D$ for maximum D polarization
 - fired from 2 K pellet launcher at DIII-D

 $H\vec{D} \uparrow + {}^{3}\vec{H}e \uparrow$ $H\vec{D} \downarrow + {}^{3}\vec{H}e \uparrow$

- Prepare polarized deuterium with existing Jefferson Lab facilities: solid $H\vec{D}$ pellets
 - diffuence and the interchalle (Inartial Confinement Eurien ICE type standard technology well established
 - in nuclear physics experiments
 - spin transfer ${\rm H} \rightarrow {\rm D}$ for maximum D polarization
 - fired from 2 K pellet launcher at DIII-D
- Develop polarized ³He with existing U. Virginia facilities: gas-filled ICF-type pellets
 - build equipment to reproduce procedure at DIII-D
 - fired from 77 K pellet launcher

 $H\vec{D} \uparrow + {}^{3}\vec{H}e \uparrow$ $H\vec{D} \downarrow + {}^{3}\vec{H}e \uparrow$

S.P.Smith et al./22nd International Spin Symposium/September 28, 2016

- Prepare polarized deuterium with existing Jefferson Lab facilities: solid $H\vec{D}$ pellets
 - diffuence and the interstability of the stability of th
 - in nuclear physics experiments
 - spin transfer $H \rightarrow D$ for maximum D polarization
 - fired from 2 K pellet launcher at DIII-D
- Develop polarized ³He with existing U. Virginia facilities: gas-filled ICF-type pellets
 - build active research and technique development
 - $H\vec{D}$ \uparrow + ${}^{3}\vec{H}e$

- Prepare polarized deuterium with existing Jefferson Lab facilities: solid $H\vec{D}$ pellets
 - diffuence and the interstability of the stability of th
 - in nuclear physics experiments
 - spin transfer $H \rightarrow D$ for maximum D polarization
 - fired from 2 K pellet launcher at DIII-D
- Develop polarized ³He with existing U. Virginia facilities: gas-filled ICF-type pellets
 - build active research and technique development
- Fire pellets with alternating spin alignment into appropriately high-T_i plasma at DIII-D

Variable Spin-aligned Fuels will Produce Different Fusion Product Distributions

- Consider realistic polarization fractions
- Resulting fusion cross-sections produce a 30% difference in fusion rate

 $\left\langle \sigma^{par} V \right\rangle = \left\langle \sigma_{o} V \right\rangle \left\{ 1 + \frac{1}{2} (0.26) \right\}$ $\left\langle \sigma^{anti} V \right\rangle = \left\langle \sigma_{o} V \right\rangle \left\{ 1 - \frac{1}{2} (0.26) \right\}$

 Trapped/passing population of the fusion products is also dependent on the spin-alignment

 $P_{V}(\vec{D}) = 0.40$ JLab

 $P(^{3}\vec{H}e) = 0.65$ UVa

QH-mode Shot with T_i(0) = 15 keV is Modeled to Demonstrate Output Profile of Charged Fusion Products

- Start from ONETWO* calculations of D-D fusion rate for D pellet injected shot
- Convert to equivalent for D-³He
- Scale up to high T_i discharge

*H.S. John, et al., Proceedings of the 15th

IAEA Conference, Seville, Vol. 3, 603 (1994)

S.P.Smith et al./22nd International Spin Symposium/September 28, 2016

Following fusion products of various birth locations and pitch angles reveals final losses to walls in DIII-D

 Trapped particles get preferentially lost to different locations than passing particles

Following protons of various birth locations and pitch angles reveals final losses to walls in DIII-D

S.P.Smith et al./22nd International Spin Symposium/September 28, 2016

Ratio of parallel to anti-parallel proton fusion product poloidal distribution yields up to 30% change

Characteristic signature of SPF is poloidal dependence of Anti/Parallel proton ratio

Following alphas of various birth locations and pitch angles reveals final losses to walls in DIII-D

Ratio of parallel to anti-parallel alpha fusion product poloidal distribution yields up to 30% change

Characteristic signature of SPF is poloidal dependence of Anti/Par alpha ratio

- Prepare polarized deuterium with existing Jefferson Lab facilities: solid $H\vec{D}$ pellets
 - diffuse 200 400 atm HD into shalls (ICE type from CA)
 - cod standard technology well established in nuclear physics experiments
 - fired from 2 K pellet launcher at DIII-D
- Develop polarized ³He with existing U. Virginia facilities: gas-filled ICF-type pellets

build active research and technique development

• Fire periods with all arresting only all arrests $H\vec{D} \uparrow \pm {}^{3}\vec{H}_{o} \uparrow$ into an signal-to-noise must satisfy certainty criterion $HD \downarrow \pm He \parallel$

Scientific Demonstration of an SPF Effect May Require ~40 (Repeated) Plasma Shots

- Scientific demonstration achieved when effect is measured at 5σ certainty
- Expected significance level determined from Monte Carlo calculations
- Significance depends strongly on shot repeatability
 - 8% variation \rightarrow 4 shots
 - 16% variation \rightarrow 18 shots

A.M. Sandorfi and A. D'Angelo, Springer Proc. Phys. 187 (2016) 115 A.M. Sandorfi, et al., (to be published)

DIII-D Shots are Generally Reproducible, though it Remains to Demonstrate this for an SPF-relevant Plasma

- Repeating a shot produces the same result, even when considering instabilities
- High-performance discharges exhibit ~10% variability in peak temperatures*
- Need to determine the profile repeatability in a high ion temperature shot $R \propto n_{He} n_D T_i$

*G.L. Jackson, "DIII-D shot series with similar shots," Internal Memo, December 9, 2014

Development of Spin Polarized Fusion (SPF) Could Yield Great Rewards; Further Research Needed

- SPF can reduce reactor costs through increased fusion rate at given plasma conditions
- Test of polarization lifetime can be achieved in DIII-D plasmas
- Companion work is leading to improved techniques for fuel preparation

Supplementary Slides

³He is Regularly Polarized; Newest Results Show that Polarization Survives Permeation through Shell

- ³He is polarized through spin-exchange optical pumping
 - Rb vapor pumped with 795 nm, 100 W laser in an oven at > 200 C
 - Rb transfers polarization to K by collisions
 - K transfers polarization to ³He by collisions

- Typical polarization is 70% @ 10 amagats (~10 atm)
- Large volume targets are used in Nuclear Physics experiments
- Challenge for the tokamak fuel
 - high power laser, polarize materials inside a glass cell
 - remove alkalis (~few ppm)
 - permeate through ICF-type shell

Experiments Confirm ³He Maintains Polarization During Permeation Process

10¹⁰ Cool to LN₂ to seal pellet 300 vr at LN 10^{8} **Polarization decay** 10^{6} 2 hr at Dry Ice $P_{\rm ICF} = P_o \left(1 - e^{\frac{-t}{\tau}} \right)$ τ(s) 10⁴ 10 sec at 200 C 100 Permeation at 20 - 200 C O Tau 3He Tau 4He 100 200 300 400 T (K)

S.P.Smith et al./22nd International Spin Symposium/September 28, 2016

Jefferson Lab

500

Experiments Confirm ³He Maintains Polarization for Hours Following Permeation through a Shell

- 2 mm Ø GDP pellets in a glass tube
- pellets permeated with polarized ³He, cooled to 77K to seal, ³He outside removed

G.W. Miller, A.M. Sandorfi, X. Zheng, K. Wei, X. Wei, A. Deur, J. Liu, M. Lowry, J.P. Mugler III

- supported by the University of Virginia A&S Faculty Initiatives Research Funds
- further R&D is ongoing

MRI time sequenced images;
 signal loss dominated by RF loss;
 ⇔ polarization decay T₁ > 6 hours

Jefferson Lab

ICF pellets can be filled with polarized ³He and maintained for hours at LN₂(77 K)

Previous Cost/Benefit Analysis Determined SPF is a Worthwhile Development for Reactor Applications

 Analysis published in 1985:
 P. Finn, J. Brooks, D. Ehat, Y. Gohar, C. Baker, R. Mattas, NL/ FPP-85-1 Report DE86-007949; Fus. Sci. Tech. 10, 902 (1986)

Modeling setup

- plant costs are ~1/10 * ITER (STARFIRE design)
- full polarization of injected fuel
- no consideration for increased alpha heating
- result: insignificant increase in reactor cost to implement SPF

Modest gains projected

- reduced cost for necessary current drive to reach ignition
- increased lifetime of first wall
- allows for reduced field and reactor size
- reduced operating cost per MW

Enhanced D and T Spin Substate Populations do not Arise Naturally in a Tokamak Magnetic Equilibrium

- Unequal populations \rightarrow polarization
- Triton polarization: $P(t) = N(-\frac{1}{2}) N(+\frac{1}{2})$
- Deuteron vector polarization: $P^{V}(D) = N(-1) N(+1)$
 - spin all parallel to B: P = +1
 - spin all anti-parallel to B: P = -1
- Negligible polarization from tokamak field ~ 10-9

Charged Fusion Products Reach the Walls with a Unique Poloidal Profile Conducive to Measurement

- Proton and alpha products from D + ³He reaction are lost due to their large orbit size: 14.7 MeV proton → 25 cm gyroradius at 2.15 T
- Modeled scenario shows the majority of lost protons spread across a 50° poloidal range of the wall
- Ratio of Proton Flux 1.2 ' Paralle 1.0 0.8 Anti-parallel , 0.6 0.4 0.2 0.0 <u></u> –100 -50 50 100 150 Poloidal Angle (deg)
- Large SPF effect manifests as differences in fusion proton flux between anti-parallel and parallel spin alignment cases

Characteristic signature of SPF is poloidal dependence of Anti/Par proton ratio

S.P.Smith et al./22nd International Spin Symposium/September 28, 2016

