Spin polarized fuel in tokamak fusion reactors

Sterling P. Smith

with
D.C. Pace, M.J. Lanctot, G.L. Jackson, A.M. Sandorfi

1 DIII-D National Fusion Facility at General Atomics
2 Thomas Jefferson National Accelerator Facility

Presented at the 22nd International Spin Symposium
September 28, 2016
Injecting spin polarized fuel in an existing tokamak would inform the possibility of enhanced future tokamaks

- Spin polarizing the fuel in the most favorable fusion reaction
 \[\text{D + T} \rightarrow \text{^{5}He} \rightarrow \alpha + n \ (+17.6 \text{ MeV}) \]
 yields up to a factor of 1.5 greater cross section for this reaction

- In the power balance of a future tokamak reactor, a 50% increase in cross section leads to a 75% increase in fusion power

- The polarization survival should be testable in DIII-D by injecting spin polarized HD and \(^{3}\text{He}\) pellets and measuring the quantity and distribution of fusion products on the tokamak wall from
 \[\text{D + ^{3}He} \rightarrow \text{^{5}Li} \rightarrow \alpha + p \]
Outline

• What is a tokamak?

• Nuclear physics of spin polarized fusion

• Implications for future reactors

• Testing spin polarization survivability in DIII-D
Tokamak = Toroidal Confinement by Magnetic Fields

- The toroidal guide field is produced by external coils
- The poloidal field is produced by driving current toroidally in the plasma
- Helically winding magnetic field lines trace out a flux surface
- The plasma particles are confined long enough to undergo fusion
DIII-D is a medium sized, but well diagnosed tokamak

- $B_T < 2.1 \, T$, $I_p < 1.5 \, MA$
- $R = 1.6 \, m$, $a = 0.6 \, m$
- H, D, or He Fuel
- Elect. Dens. $\sim 5 \times 10^{19}/m^3$
- Elect. Temp. $< 12 \, keV$
- Ion Temp. $< 18 \, keV$
- 15 MW Neutral Beams
- 3 MW Electron Cyclotron Heating
- Discharge current flat-top 5-10 s
- 1 discharge (shot) per 12-15 minutes

DIII-D tokamak (San Diego / USA)
ITER is the next step device being built in France

Where’s Waldo?

DIII-D
Pitch (polar) angle of fusion products relative to the magnetic field matters in a tokamak

- Pitch angle closer to 0 or 180 degrees: **passing** particle stays closer to magnetic field line and samples all of the flux surface – confined longer to give energy to thermal plasma
- Pitch angle closer to 90 degrees: **trapped** particle has large excursions from the flux surface and doesn’t sample inboard.
Outline

• What is a tokamak?

• Nuclear physics of spin polarized fusion

• Implications for future reactors

• Testing spin polarization survivability in DIII-D
Reactor Performance can be Improved by Exploiting the Dependence of Fusion Cross-section on Spin Polarization

Fusion Reaction

\[\text{D + T} \rightarrow \alpha + n (+17.6 \, \text{MeV}) \]

Reaction Rate, \(R \) (s\(^{-1}\))

\[R = n_D \, n_T \, V_{\text{plasma}} \langle \sigma v \rangle \]

Isotropic Spin Distribution

\[\int \sigma \rightarrow \sigma_0 \]

Spin Polarized Distribution: parallel to B

\[\int \sigma \rightarrow 1.5 \, \sigma_0 \] 50% fusion rate increase for full polarization

Studying the $D + {}^3He$ Reaction Addresses the Physics Necessary for Application to $D + T$ Reactions

$D + T \to {}^5He \to \alpha + n \quad D + {}^3He \to {}^5Li \to \alpha + p$

- Isospin (neutron/proton equivalence) is a very good quantum number, particularly at the low energies of particles in a tokamak
 - 5He and 5Li are mirror nuclei with nearly identical low-energy structure
 - $D+T$ and $D+{}^3He$ reactions are mirror reactions with same spins and same nuclear physics
Polarization Leads to a Non-isotropic Fusion Cross-section

- Inject polarized fuel into a tokamak

\[
\text{D} + ^3\text{He} \rightarrow ^5\text{Li} \rightarrow \alpha + p
\]

parallel spins \(\vec{D} \uparrow ^3\text{He} \uparrow \):
\[
\frac{d\sigma}{d\Omega_{cm}} = \left(\frac{d\sigma}{d\Omega} \right)_0 \left\{ \frac{9}{4} \sin^2 \theta \right\}
\]

antiparallel spins \(\vec{D} \uparrow ^3\text{He} \downarrow \):
\[
\frac{d\sigma}{d\Omega_{cm}} = \left(\frac{d\sigma}{d\Omega} \right)_0 \left\{ \frac{1}{4} (1 + 3 \cos^2 \theta) \right\}
\]

- Pitch angle \((\theta)\) of the charged fusion products relative to the magnetic field is skewed
 - parallel spins produce more trapped particles
 - anti-parallel spins produce more passing particles
(Anti-) Aligning Spins Yields (-)+50% Change in Fusion Rate

- Angle-integrated fusion cross-section:
 \[
 \sigma_{\text{cm}} = \sigma_0 \left\{ 1 + \frac{1}{2} \vec{P}_D^V \cdot \vec{P}_3^{\text{He}} \right\}
 \]

- Fully polarized fuel:
 \[
 \left| \vec{P}_D^V \right| = 1 , \quad \left| \vec{P}_3^{\text{He}} \right| = 1
 \]

- Resulting fusion rate is modified
 - both spins parallel to B:
 \[
 \sigma_{\text{cm}} = \sigma_0 \left\{ 1 + \frac{1}{2} \right\}
 \]
 - one spin parallel, the other anti-parallel to B:
 \[
 \sigma_{\text{cm}} = \sigma_0 \left\{ 1 - \frac{1}{2} \right\}
 \]
Outline

• What is a tokamak?

• Nuclear physics of spin polarized fusion

• Implications for future reactors

• Testing spin polarization survivability in DIII-D
Spin Polarized Fuel can Benefit Fusion Reactors by Improving either Power Generation or α-particle Confinement*

- **Improving power generation**
 - D and T polarized \parallel B
 - 100% polarization produces fusion rate increase of 50%
 - α-particle birth pitch angle
 \[N(\theta_{\alpha}) \sim \sin^2(\theta_{\alpha}) \]

- **Enhanced α-particle confinement**
 - D polarized \perp B
 - \[N(\theta_{\alpha}) \sim 1 + 3 \cos^2(\theta_{\alpha}) \]
 - larger passing α-particle population

Spin Polarized Fuel can Makeup for Magnetic Field Degradation in Superconducting Tokamaks

- Recast the fusion rate in terms of magnetic field

\[R = n_D n_T V_{\text{plasma}} \langle \sigma v \rangle \]
\[= \frac{\beta^2 B^4}{4 \mu_0^2 T^2} V_{\text{plasma}} \langle \sigma v \rangle \]

- 50% increase in reaction rate is equivalent to as much as a 11% increase in magnetic field for ITER
 - improve Q at targeted magnetic field
 - reach Q = 10 even if facing toroidal field degradation

Increase in Fusion Power Scales Faster than the Reaction Rate

- Fusion alphas heat a reactor through collisional damping on electrons and ions.
- Increased fusion alpha heating increases the plasma temperature.
- Increased plasma temperature further increases fusion rate until a new power balance is reached.
- Fusion rate increase of 1.5 → fusion power increase of 1.75.
Polarized Fuel has the Potential to Significantly Reduce Reactor Cost

- **Fuelling a 500 MW plasma in ITER**
 - 5 mm outer diameter pellets of separate D and T injected at 7 Hz
 - 2000 mol/day of each species at 100% polarization

- **If these quantities of polarized fuel are available**
 - equivalent to ~15% magnetic field increase
 - tokamak reactor cost scales as \(B^2 \)
 - reactor cost is reduced by ~30%

Next Step in SPF Research is to Demonstrate that the Fuel Remains Polarized Longer than a Confinement Time

• SPF benefits require that polarization persists in the tokamak long enough for fusion to occur
 – energy splitting between polarization states is minuscule: \[10^{-10} \text{ keV} \ll T_{\text{ion}}\]

• Many depolarization mechanisms have been explored, but survival is expected (collisions and recycling are small depolarization mechanisms)*
 – Recent ITER modeling predicts that wall recycling will be negligible for its hot plasma conditions

• We propose that polarization survival should be tested in current devices with current polarization techniques

Outline

• What is a tokamak?

• Nuclear physics of spin polarized fusion

• Implications for future reactors

• Testing spin polarization survivability in DIII-D
• Prepare polarized deuterium with existing Jefferson Lab facilities: solid $^{2}H^{3}D$ pellets
 – diffuse 200 - 400 atm HD into shells (Inertial Confinement Fusion ICF type from General Atomics)
 – cool gas to reach solid state
 – polarize both H and D
 – spin transfer H \rightarrow D for maximum D polarization
 – fired from 2 K pellet launcher at DIII-D
Prepare polarized deuterium with existing Jefferson Lab facilities: solid $H\bar{D}$ pellets

- diffuse 200–400 atm HD into shells (Inertial Confinement Fusion ICF type from General Atomics)
- cool gas to reach solid state
- polarize both H and D
- spin transfer H \rightarrow D for maximum D polarization
- fired from 2 K pellet launcher at DIII-D

standard technology well established in nuclear physics experiments
• Prepare polarized deuterium with existing Jefferson Lab facilities: solid 2H3D pellets
 – diffuse 200–400 atm HD into shells (Inertial Confinement Fusion ICF type from General Atomics)
 – cool gas to reach solid state
 – polarize both H and D
 – spin transfer H → D for maximum D polarization
 – fired from 2 K pellet launcher at DIII-D

• Develop polarized 3He with existing U. Virginia facilities: gas-filled ICF-type pellets
 – build equipment to reproduce procedure at DIII-D
 – fired from 77 K pellet launcher
• Prepare polarized deuterium with existing Jefferson Lab facilities: solid $H\tilde{D}$ pellets
 – diffuse 200 - 400 atm HD into shells (Inertial Confinement Fusion ICF type from General Atomics)
 – cool gas to reach solid state
 – polarize both H and D
 – spin transfer H \rightarrow D for maximum D polarization
 – fired from 2 K pellet launcher at DIII-D

• Develop polarized 3He with existing U. Virginia facilities: gas-filled ICF-type pellets
 – build equipment to reproduce procedure at DIII-D
 – fired from 77 K pellet launcher

DIII-D Experiments could Confirm Polarization Lifetime by Comparing Fusion Product Yields

standard technology well established in nuclear physics experiments

active research and technique development

$H\tilde{D} \uparrow + ^3\tilde{He} \uparrow$

$H\tilde{D} \downarrow + ^3\tilde{He} \uparrow$
• Prepare polarized deuterium with existing Jefferson Lab facilities: solid 2H2D pellets
 – diffuse 200 - 400 atm HD into shells (Inertial Confinement Fusion ICF type from General Atomics)
 – cool gas to reach solid state
 – polarize both H and D
 – spin transfer H \rightarrow D for maximum D polarization
 – fired from 2 K pellet launcher at DIII-D

• Develop polarized 3He with existing U. Virginia facilities: gas-filled ICF-type pellets
 – build equipment to reproduce procedure at DIII-D
 – fired from 77 K pellet launcher

• Fire pellets with alternating spin alignment into appropriately high-T$_i$ plasma at DIII-D

standard technology well established in nuclear physics experiments

active research and technique development

$H\bar{D} \uparrow + ^3\bar{He} \uparrow$

$H\bar{D} \downarrow + ^3\bar{He} \uparrow$
Consider realistic polarization fractions

\[
\begin{align*}
P_v(D) &= 0.40 & \text{JLab} \\
P(\overline{3}\overline{He}) &= 0.65 & \text{UVa}
\end{align*}
\]

Resulting fusion cross-sections produce a 30% difference in fusion rate

\[
\frac{\langle \sigma_{\text{par}} \rangle}{\langle \sigma_{\text{anti}} \rangle} = 1.30
\]

Trapped/passing population of the fusion products is also dependent on the spin-alignment
QH-mode Shot with $T_i(0) = 15$ keV is Modeled to Demonstrate Output Profile of Charged Fusion Products

- Start from ONETWO* calculations of D-D fusion rate for D pellet injected shot
- Convert to equivalent for D-3He
- Scale up to high T_i discharge

S.P. Smith et al./22nd International Spin Symposium/September 28, 2016
Following fusion products of various birth locations and pitch angles reveals final losses to walls in DIII-D

- **Trapped** particles get preferentially lost to different locations than **passing** particles
Following protons of various birth locations and pitch angles reveals final losses to walls in DIII-D.

Ion Rate $10^{11}/(\text{m}^2\text{s})$
Ratio of parallel to anti-parallel proton fusion product poloidal distribution yields up to 30% change

Characteristic signature of SPF is poloidal dependence of Anti/Parallel proton ratio

Poloidal angle (ψ)
Following alphas of various birth locations and pitch angles reveals final losses to walls in DIII-D.
Ratio of parallel to anti-parallel alpha fusion product poloidal distribution yields up to 30% change.

Characteristic signature of SPF is poloidal dependence of Anti/Par alpha ratio.
• Prepare polarized deuterium with existing Jefferson Lab facilities: solid 2H2D pellets
 – diffuse 200–400 atm HD into shells (ICF type from GA)
 – cool gas to reach solid state
 – polarize both H and D
 – spin transfer H \rightarrow D for maximum D polarization
 – fired from 2 K pellet launcher at DIII-D

 standard technology well established in nuclear physics experiments

• Develop polarized 3He with existing U. Virginia facilities: gas-filled ICF-type pellets
 – build equipment to reproduce procedure at DIII-D
 – fired...

 active research and technique development

• Fire pellets with alternating spin alignment into appropriately high-T plasma at DIII-D

 2H2D $\uparrow \uparrow + ^{3}$He $\uparrow \uparrow$

 2HD $\downarrow \downarrow + ^3$He $\uparrow \uparrow$

 signal-to-noise must satisfy certainty criterion
Scientific Demonstration of an SPF Effect May Require ~40 (Repeated) Plasma Shots

- Scientific demonstration achieved when effect is measured at 5σ certainty
- Expected significance level determined from Monte Carlo calculations
- Significance depends strongly on shot repeatability
 - 8% variation \rightarrow 4 shots
 - 16% variation \rightarrow 18 shots

\[P(D) = 0.40; P(3\text{He}) = 0.65 \]

A.M. Sandorfi, et al., (to be published)
DIII-D Shots are Generally Reproducible, though it Remains to Demonstrate this for an SPF-relevant Plasma

- Repeating a shot produces the same result, even when considering instabilities

- High-performance discharges exhibit ~10% variability in peak temperatures*

- Need to determine the profile repeatability in a high ion temperature shot

\[R \propto n_{He} n_D T_i \]

*G.L. Jackson, “DIII-D shot series with similar shots,” Internal Memo, December 9, 2014
Development of Spin Polarized Fusion (SPF) Could Yield Great Rewards; Further Research Needed

• SPF can reduce reactor costs through increased fusion rate at given plasma conditions

• Test of polarization lifetime can be achieved in DIII-D plasmas

• Companion work is leading to improved techniques for fuel preparation
Supplementary Slides
• 3He is polarized through spin-exchange optical pumping
 – Rb vapor pumped with 795 nm, 100 W laser in an oven at > 200 C
 – Rb transfers polarization to K by collisions
 – K transfers polarization to 3He by collisions

• Typical polarization is 70% @ 10 amagats (~10 atm)

• Large volume targets are used in Nuclear Physics experiments

• Challenge for the tokamak fuel
 – high power laser, polarize materials inside a glass cell
 – remove alkalis (~few ppm)
 – permeate through ICF-type shell
Experiments Confirm 3He Maintains Polarization During Permeation Process

- Cool to LN$_2$ to seal pellet
- Polarization decay
 \[P_{\text{ICF}} = P_0 \left(1 - e^{-\frac{t}{\tau}} \right) \]
- Permeation at 20 - 200 C
Experiments Confirm 3He Maintains Polarization for Hours Following Permeation through a Shell

- supported by the University of Virginia A&S Faculty Initiatives Research Funds
- further R&D is ongoing

- 2 mm Ø GDP pellets in a glass tube
- pellets permeated with polarized 3He, cooled to 77K to seal, 3He outside removed
- MRI time sequenced images; signal loss dominated by RF loss; polarization decay $T_1 > 6$ hours

ICF pellets can be filled with polarized 3He and maintained for hours at LN$_2$ (77 K)
Previous Cost/Benefit Analysis Determined SPF is a Worthwhile Development for Reactor Applications

- Analysis published in 1985:

- **Modeling setup**
 - plant costs are $\sim 1/10 \times$ ITER (STARFIRE design)
 - full polarization of injected fuel
 - no consideration for increased alpha heating
 - result: insignificant increase in reactor cost to implement SPF

- **Modest gains projected**
 - reduced cost for necessary current drive to reach ignition
 - increased lifetime of first wall
 - allows for reduced field and reactor size
 - reduced operating cost per MW
Enhanced D and T Spin Substate Populations do not Arise Naturally in a Tokamak Magnetic Equilibrium

\[m_T = -1/2 \begin{cases} m_D = +1 \\ 2\mu_T B \end{cases} \quad m_D = 0 \quad m_D = -1 \]

\[m_T = +1/2 \begin{cases} \mu_D B \\ 2\mu_T B \end{cases} \]

- Unequal populations → polarization
- Triton polarization: \(P(t) = N(- 1/2) - N(+ 1/2) \)
- Deuteron vector polarization: \(P^V(D) = N(- 1) - N(+ 1) \)
 - spin all parallel to B: \(P = +1 \)
 - spin all anti-parallel to B: \(P = -1 \)
- Negligible polarization from tokamak field \(\sim 10^{-9} \)

D-T Zeeman levels

\[\mu_T = 9.4 \times 10^{-11} \text{ keV/Tesla} \]
\[\mu_D = 2.7 \times 10^{-11} \text{ keV/Tesla} \]
Proton and alpha products from D + 3He reaction are lost due to their large orbit size: 14.7 MeV proton \rightarrow 25 cm gyroradius at 2.15 T

Modeled scenario shows the majority of lost protons spread across a 50° poloidal range of the wall

Large SPF effect manifests as differences in fusion proton flux between anti-parallel and parallel spin alignment cases

Characteristic signature of SPF is poloidal dependence of Anti/Par proton ratio