22nd International Spin Symposium Hosted by: University of Illinois and Indiana University September 25-30, 2016 at UIUC

SPIN PHYSICS AT THE ELECTRON ION COLLIDER: THE JLEIC DETECTOR CONCEPT

Charles E. Hyde Old Dominion University Norfolk VA chyde@odu.edu EIC @ Jefferson Lab 3-10 GeV $e^- \otimes Z \cdot (20-100 \text{ GeV/c})$ ions Longitudinal and Transverse Polarized $p, d, {}^{3}\text{He}, {}^{7}\text{Li}, \dots$ Tensor polarized d

Particle I.D. Central Detector

- Electron Endcap: (p < 10 GeV)
 - e/π: EMCal (PbWO₄, Shashlyk)
 ⊗ Hadron Blind (Cherenkov)

- $\pi/K/p$: Modular Aerogel RICH (mRICH) \oplus TOF
- Barrel Region:
 - e/π : EMCal (Shashlyk or SciFi) \otimes DIRC (0.7—1.0 GeV/c)
 - π/K: DIRC (p < 6 GeV/c...R&D) ⊗ TOF (80 ps, p ≤ 1.5 GeV/c)
- Ion Endcap
 - π/K : TOF (p<2.4 GeV) \otimes Dual (Aerogel/Gas) RICH (p<50 GeV/c)
 - e/γ/μ/π: EMCal (Shashlyk) ⊗ HCal

C. Hyde SPIN-2016

9/27/16

4

Ion-Downstream Spectrometer & ZDC

- Proton remnant (DVCS, DVMP) from proton beam
 - Focus at IP+45 m
 - Dispersion ~ 1m/100%, Magnification ~ -0.5
 - 300 μ m resolution $\rightarrow \sigma(p)/p = 3 \cdot 10^{-4} =$ Beam rms
 - 300µm resolution over 2m $\rightarrow \sigma(\theta_{IP}) = 0.3$ mrad = Beam rms
 - FFQ acceptance (6T pole field) ~± 8 mrad
- Neutron remnant, ZDC acceptance ± 10mrad
 - High performance HCal:
 - $\sigma(E)/E \sim 30\% [1 \text{ GeV}/E]^{1/2}$, $\sigma(\theta) < 0.3 \text{mrad}$

C. Hyde SPIN-2016

Final States: DIS → Diffractive DIS → Deep Virtual Exclusive Scattering

Deep Inelastic Scattering (DIS)

Diffractive Scattering (DDIS)

Rapidity Gap: $\Delta \eta \ge 2$

~10% of HERA events

Proton Remnant:

- Di-quark/ tetra-quark color triplet
- Color octet

Acceptance for p' in DDIS

Deep Virtual Exclusive Scattering Transverse Spatial Imaging vs. x_{Bi}

• Detector Acceptance

- eRHIC: new IR design: $0.18 \le p_T$
- JLEIC: Far-Forward spectr. $0.0 \le p_T$ for $x_{Bi} > 0.003$

Nuclear DIS Final State with an EIC

Naïve spectator kinematics:

$$p_i^{[+,T,-]} = \begin{bmatrix} \frac{\alpha_i}{A} P_A^+, \mathbf{p}_{i,T}, p_i^- \end{bmatrix}$$
$$p_i^- = \frac{M^2 + \mathbf{p}_{i,T}^2}{2\alpha_i P_A^+ / A}$$
$$\sum_{i=1}^A \alpha_i = A, \qquad \sum_{i=1}^A \mathbf{p}_{i,T} = 0$$

- Fermigas: $|\alpha_i 1| \approx p_F / M \approx 0.25$ $\mathbf{p}_{i,T} \leq p_F$
- In a deuteron of momentum 100 GeV/c, spectator neutron or proton has laboratory momenta $(p_{||}, p_T) \approx [\alpha_i(50 \text{ GeV/c}), \mathbf{p}_{i,T}]$
 - Proton Spectator Forward Tagging!

F_{2n}(x_B,Q²) from Proton Spectator-Tagging on the Deuteron

•

•

Neutron Spin Structure Functions: $d(\vec{e}, e'p_s) X$

Statistical & Systematic Errors from On-Shell Extrapolation

C. Hyde SPIN-2016

The EMC Effect in the Deuteron In a given bin in (x_{Bi}, Q^2) :

- First extrapolate to the onshell point with data $\alpha \approx 1$
- Compare IA (dashed) with pseudo- data (solid) at 'large' negative $\alpha - 1$
 - $\alpha < 1$ minimizes FSI
 - EMC Effect modeled via t'dependent form factor
- Illustrated Luminosity is 10 / fb

Polarized EMC Effect I. Cloet, et al, PLB 642 (2006)210

• g_{1p}

in Medium

Free

 g_{1p}

C. Hyde SPIN-2016

Deuteron Tensor Polarization in DIS

- Quark–Anti-quark–gluon structure of the NN tensor force
- HERMES data
- Theory:
 S. Kumano,
 PRD 82
 017501

DVES on Deuteron

- Coherent d(e,e'd V)
 - Tensor polarized beam: Observe quark-gluon structure of tensor interaction.
- Incoherent d(e,e'pnV)
 - Miller, Sievert, Rajugopalan, www.arXiv.org/1512.03111
 - Low mass NN final state ≈ independent nucleons
 - High mass NN final state → probe spatial size of interacting pair

Conclusion

- A High Luminosity Polarized Electron Ion Collider is an unprecedented tool to quantitatively explore the quarkgluon dynamics of
 - the Origin of the Mass and spin of mesons and baryons
 - The creation of mass as a quark or gluon propagates through cold QCD matter
 - Vacuum
 - Nucleus
 - Spin Isospin dependence of Nuclear Binding
 - NN Force
 - NNN Force?
- These are exciting, challenging questions.
 - We can make progress
 - This will resonate with the larger scientific community

BACKUP SLIDES

JLEIC IP Beamline Optics Design

- Full Conceptual Design (field profiles, physical dimensions):
 - Final focus Quad blocks,
 - (electron, ion), (upstream, downstream)
 - Solenoid (with fringe field)
 - Large ion-downstream dipole (D2)
- Design in process:
 - Small (6 mrad) ion-downstream dipole (D1) and electron-beam flux exclusion

SPECTATOR TAGGING

- Spectator Tagging: $p_R = p_p^{\{+,\perp,-\}} = \begin{bmatrix} \alpha \\ \frac{\alpha}{2} P_D^+, \mathbf{p}_{R\perp}, \frac{M^2}{\alpha P_D^+} \end{bmatrix} \approx P_D^{\mu}/2$
 - Impulse Approximation: $p_n^2 = (P_D - p_R)^2 = t = M_n^2 + t'$ $-t' > M_D B + B^2/2 = 4.1 \cdot 10^{-3} \text{ GeV}^2$
- In Deuteron rest-frame:
 - $\mathbf{p}_p \to \frac{(\alpha-1)}{2} M_N \hat{z} + \mathbf{p}_\perp$ for $\alpha \approx 1$ and $|\mathbf{p}_\perp| << M_N$
- In Collider Frame:

$$\mathbf{p}_p pprox rac{1}{2} \mathbf{P}_D + \mathbf{p}_\perp$$

 $\mathbf{p}_p pprox rac{lpha}{2} \mathbf{P}_D + \mathbf{p}_\perp$

26 Sept 2016 19

Neutron Spin Structure

 Longitudinal Double Spin Asymmetry on the Neutron

x-dependence at fixed Q^2

Q^2 -dependence at fixed x

Spin & Particle ID:

- Semi Inclusive DIS (SIDIS):
 - Flavor tagging in EIC covers a wide range in $(x_B, Q^2, z, k_T, \phi_S)$
 - 3-D momentum imaging (TMDs), Transversity, Tensor Charge...
 - $K_S^0 \rightarrow \pi^+\pi^-$ i.d. from vertex tracker, with forward boost
- Diffractive DIS: Forward tagging of diffracted beam
- Exclusive processes:
 - p(e,e'γ p), p(e,e'V p), p(e,e'π⁺n), p(e,e'K⁺ Λ), p(e,e' K_S⁰ Σ⁺)
 - Longitudinal and transverse polarized ion beams:
 - Separate Vector H, E, Axial H, É Compton Form Factors
 - Meson flavor & spin \rightarrow vector/axial and flavor/gluon