

Precise Measurement of the Muonium HFS at J-PARC MUSE

Y. Ueno for MuSEUM Experiment

Agenda

2

► MuSEUM

- Introduction of the Experiment
- Physics Motivation
- Experimental Apparatuses
 - ► J-PARC MUSE: Intense Pulsed Muon Beam
 - ► Other Apparutuses
 - Systematic Uncertainties
- Current Status
 - ► Resonance Signal Observed in June 2016
- ► Future Prospect

MuSEUM Collaboration

MuSEUM

MuSEUM

Collaborators

M. Aoki^A, Y. Fukao^B, Y. Higashi^C, T. Higuchi^C, H. Iinuma^B, Y. Ikedo^B, K. Ishida^D, T.U. Ito^F, M. Iwasaki^D, R. Kadono^B, O. Kamigaito^D, S. Kanda^E, D. Kawall^G, N. Kawamura^B, A. Koda^B, K.M. Kojima^B, M.K. Kubo^H, Y. Matsuda^C, T. Matsudate^C, T. Mibe^B, Y, Miyake^B, T. Mizutani^C, K. Nagamine^B, S. Nishimura^E, K. Nishiyama^B, T. Ogitsu^B, R. Okubo^B, N. Saito^B, K. Sasaki^B, S. Seo^C, K. Shimomura^B, P. Strasser^B, M. Sugano^B, M. Tajima^C, K.S. Tanaka^I, T. Tanaka^C, D. Tomono^J, H.A. Torii^C, E. Torikai^K, A. Toyoda^B, K. Ueno^B, Y. Ueno^C, D. Yagi^C, A. Yamamoto^B, M. Yoshida^B

Universities and Institutions

Osaka University^A, KEK^B, Graduate School of Arts and Sciences, University of Tokyo^C, RIKEN^D, Department of Physics, University of Tokyo^E, JAEA^F, University of Massachusetts^G, ICU^H, Tohoku University^I, RCNP^J, University of Yamanashi^K

6 Universities, 4 Institutions: 45 people

MuSEUM

U+

Energy

1S

e

Mu

HFS

- ► <u>Mu</u>onium <u>Spectroscopy</u> <u>Experiment</u> <u>Using</u> <u>M</u>icrowave
 - Spectroscopy of muonium hyperfine structure
- ► Muonium: bound state of μ^+ and e^-
 - ► Hydrogen-like atom
 - Purely-leptonic: no proton
 - ► Theoretical value: precisely calculated
- ► Motivations:
 - ► Test of the bound-state QED
 - Determination of the muon magnetic moment/mass
 - ► New particle search, CPT/Lorentz violation search 22nd International Spin Symposium, Y. UENO, Univ. of Tokyo

Theoretical Values of Mu and H

Comparison of the theoretical values of Mu and H HFS

MuSEUM: Zeeman Splitting

MuSEUM: Zeeman Splitting

Breit-Rabi Diagram

MuSEUM: High Field

10

- ► 1.7 T field generated by SC magnet
- ► Measurements for two different frequencies
- Obtain two different physical quantities
 - ► $v_{12} + v_{34} = \Delta v$ at zero field

$$\sim v_{12} - v_{34} \sim \mu_{\mu}/\mu_{p} (m_{\mu}/m_{p})$$

W. Liu et al., PRL 82 711 (1999)

T. Mibe

D. Flay

- World record: 4.463 302 776(51) GHz (12 ppb) at LAMPF (Los Alamos Meson Physics Facility)
- $\mu_{\mu}/\mu_{\rm p} = 206.~768~276(24)$ (120 ppb) talks by
- ► Essential input parametr for the muon g–2

MuSEUM: Zero Field

11

- ► Field less than 100 nT (1 mG)
- Complementary measurement with different systematic uncertainties
- Different constraint on CPT/Lorentz invariance (mentioned in following slide)
- ► Best record 4.463 3022(14) GHz (300 ppb)

D. E. Casperson et al., Phys. Lett. 59B 397 (1975)

MuSEUM Goal: ten-fold improvements for the both measurements at zero field and in high field

Procedure

MuSEUM: New Particle Search

► Muonium HFS is sensitive to some new particles

the red circle added by YU

the red circle added by YU

MuSEUM: CPT and Lorentz Invariance 14

- CPT (Lorentz) violating background field can be detected as sidereal (or annual) oscillation of the hyperfine frequency
- Constraint on Standard Model Extension(SME) parameters

A. H. Gomes, V. A. Kostelecky and A. J. Vargas, PRD **90** 076009 (2014)

Apparatus

J-PARC

LINAC

Dai Jingū Sprine 大神宮(宗教よ人)

館

Buddhist Temple 卍 村松虚空蔵尊 卍

星月 🖮 野ばら 💿 🖙 沼田屋

= さくらや旅館

Synchrotron

3 GeV Proton

村松海岸 ↔ MLF MUSE

J-PARC MLF MUSE

- J-PARC MLF (Material and Life science Facility) MUSE(Muon Science Establishment)
- > D-Line: 1.0×10^7 muon/sec (in case of 1 kW operation)
- ► H-Line (under construction): 1.0×10^8 muon/sec
- ► The most intense pulsed muon beam
- Pulsed structure is favorable for efficient resonance analysis utilizing the information of the beam timing
- Note: the uncertainty of the world-record experiment at LAMPF is mostly from the statistics (>90%)

Superconducting Magnet for 1.7 T Field 18

- ► Bore diameter 925 mm
- ► Field uniformity is 1 ppm

- P. Strasser, et al., Hyp. Int. (2016) 237:124
- Field time stability was measured: 0.03 ppm/hour over 10 days period

22nd International Spin Symposium, Y. UENO, Univ. of Tokyo

Shield for Magnetic Field

- 19
- Stray field from magnets in the beam line as well as the earth's magnetic field
- Three layers of a box-shaped permalloy shield is employed to suppress the field less than 100 nT

Expected B-field from the beam line

K. S. Tanaka, Ph. D. Thesis, Univ. of Tokyo (2016)

Shield and gas chamber

Flux Gate Probe

- ► Three-axis flux gate probe is used for B-field measurement
- > 0.5 nT precision for each axis, linearity 5 nT
- ► Field was mesured after the resonance measurement
- ► Analysis in detail is ongoing: to be shown later

Magnetic Field with Shield and without Shield

Flux gate probe

Krypton Gas Target

- ► Inner diameter: 280 mm, length: 425 mm
- Pressure is monitored by a capacitance gauge (silicon gauge RPM4-AD will be used in near future)
- ► Purity is measured by a Q-MASS spectrometer
- Collosions of the muonium with Kr shift the resonance frequency
- Extrapolation to the vacuum
- The systematic uncertainty from the collisonal shift is 9 Hz

K. S. Tanaka, Ph. D. Thesis, Univ. of Tokyo (2016)

Microwave Cavity and RF system

- Copper microwave cavity (diameter: 81 mm, length: 230 mm)
- Microwave is generated from a signal generator and amplified by two amplifier (3 W in cavity)
- Power stability is monitored by a dedicated monitoring antenna during the measurement

22

Positron Detector

23

- Segmented (10 mm×10 mm×3mmt) Scintillator, readout: Hamamatsu MPPC (Si photomultiplyer)
- > Two layers of 240 mm \times 240 mm detector

S. Kanda, PoS (PhotoDet2015) 039 (2016)

Positron Detector

FBPM (Fiber Beam Profile Monitor)

> Thin (100 μ m) Scintillation Fibers and MPPC (SiPM)

- Cross-configured fiber hodoscope with SiPM readout
- To be placed in front of the target chamber
- Online monitoring of beam profile and intensity
- Minimum amount of material is required (4 MeV muon)

FBPM (Fiber Beam Profile Monitor)

> Thin (100 μ m) Scintillation Fibers and MPPC (SiPM)

100 mm x 100 mm active area, 32 ch. for each direction (x-y)

- ► Offline measurement of 3D beam profile
- Plastic Scintillator + CCD Camera

- Cross-sectional distribution: in good agreement with simulation
- Longitudinal distribution: analysis is underway

Cross-sectional view of the beam

Beam width

29

- combined analysis with magnetic field measured by the flux gate probe is ongoing
- ► longitudinal field: less than 60 nT
- > transverse field: spin rotation is less than 1° per 2.2 μ s (μ life)

Latest Result

Beam Time in 2016 June

- ► RF ON/OFF repeated in cycle (1 min)
- ► Each run was normalized by the number of beam pulse

22nd International Spin Symposium, Y. UENO, Univ. of Tokyo

Time Dependent Signal

► Further analysis is in progress

33

Obeserved Resonance

► After 6 hours of data taking we observed the resonance

 \mathbf{Z}

► Fit by Lorezian: further analysis is underway

Summary and Future Prospect

- MuSEUM experiment
 - ► The test of bound-state QED
 - Determination of the muon magnetic moment/mass
- ► 2016 June: First resonance signal was obeserved
 - ► further analysis is ongoing
- ► Future prospect
 - ► Next zero-field experiment in early 2017
 - H-Line will be ready in the FY 2017: the measurement in high field is going to be conducted

