Towards a self-consistent determination of Fragmentation Functions

J. Osvaldo Gonzalez Hernandez Old Dominion University

```
In collaboration with:

Mariaelena Boglione (Torino)

Leonard Gamberg (Penn State Berks)

Ted Rogers (ODU/JLab)

Nobuo Sato (JLab)
```

outline

Motivation

SIDIS and the current fragmentation region: physical picture

Power counting and kinematics of the current region

Final remarks

At the more fundamental level we would like to learn about hadronization

factorization theorems, important theoretical tool

Fragmentation functions

Not the most general picture. Certain conditions must be met to compare to experiment. Need always to be self-consistent

In this talk I will focus on the kinematics of SIDIS:

- i) simple necessary conditions
- ii) often overlooked

Guiding principle: power counting of the factorization theorem

It should be noted ...

P. J. Mulders, AIP Conf. Proc. 588, 75 (2001), [,75(2000)], arXiv:hep-ph/0010199 [hep-ph]

Phase space should be large enough to distinguish current/target regions

("Berger criterion")

E. L. Berger, (1987).

We need a quantitative way to identify the current region.

SIDIS and the current fragmentation region: physical picture

current

target

factorization theorems

(No factorization theorem for this region)

$$y_h \equiv \frac{1}{2} \log \frac{P_h^+}{P_h^-}$$

Observable

Power counting and kinematics of the current region

Factorization implies a power counting for the quark momenta

$$k_{\rm i} = \left(O(Q), O(m^2/Q), O(\mathbf{m})\right)$$

$$k_{\rm f} = \left(O(m^2/Q), O(Q), O(\mathbf{m})\right)$$

$$P_h \cdot k_{\rm f} = O\left(m^2\right)$$

$$P_h \cdot k_i = O\left(Q^2\right)$$

current region

$$|k_i^2| = O(m^2)$$

$$k_{\rm f}^2 = M_J^2 = O(m^2)$$

Factorization implies a power counting for the quark momenta

$$k_{\rm i} = \left(O(Q), O(m^2/Q), O(\mathbf{m})\right)$$

$$k_{\rm f} = \left(O(m^2/Q), O(Q), O(\mathbf{m})\right)$$

current region

$$P_h \cdot k_{\mathrm{f}} = O\left(m^2\right)$$
 $|k_{\mathrm{i}}^2| = O(m^2)$ $P_h \cdot k_{\mathrm{i}} = O\left(Q^2\right)$ $k_{\mathrm{f}}^2 = M_J^2 = O(m^2)$ hard scale small masses

This quantity must remain small.

$$R(y_h, z_h, x_{bj}, Q) \equiv \frac{P_h \cdot k_f}{P_h \cdot k_i}$$

current region

$$P_h \cdot k_{\mathrm{f}} = O\left(m^2\right)$$
 $|k_{\mathrm{i}}^2| = O(m^2)$ $P_h \cdot k_{\mathrm{i}} = O\left(Q^2\right)$ $k_{\mathrm{f}}^2 = M_J^2 = O(m^2)$ hard scale small masses

This quantity must remain small.

$$R(y_h, z_h, x_{bj}, Q) \equiv \frac{P_h \cdot k_f}{P_h \cdot k_i}$$

current region

$$P_h \cdot k_{\rm f} = O\left(m^2\right)$$

$$P_h \cdot k_{\rm i} = O\left(Q^2\right)$$

$$|k_i^2| = O(m^2)$$

$$k_{\rm f}^2 = M_J^2 = O(m^2)$$

hard scale (large)

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

It seems simple enough to set a criterion by imposing a cut in rapidity.

At these kinematics, even for $z_h=0.2$ $\it R$ remains small in a sizeable range of rapidity

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

quark momenta should be estimated

$$k_{\rm i} = \left(O(Q), O(m^2/Q), O(\mathbf{m})\right)$$

$$k_{\rm f} = \left(O(m^2/Q), O(Q), O(\mathbf{m})\right)$$

Note the uncertainty in the quark rapidities are unimportant

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

The picture starts to change when looking at lower values of Q^2

Assumptions about quark momenta become more relevant

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

The picture starts to change when looking at lower values of Q^2

Current region shrinks, low values of z_h lie almost entirely outside

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

For very low values of Q^2 things get fuzzy

It's hard to establish a criterion (thick bands)

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

Estimated quark rapidities are dangerously close.

Within this picture, the current and non-current regions strongly overlap

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

These likely are signals of the breaking of the formalism

$$P_h \cdot k_{\rm f} = O\left(m^2\right)$$

$$P_h \cdot k_i = O(Q^2)$$
hard scale

Can't tell precisely how large it should be

In the mean time

current region

One may incorporate these considerations into phenomenological analyses by looking at regions of small R

In the mean time

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

current region

Note this implies also a dependence on P_{hT} , the transverse momentum of the observed hadron

In the mean time

$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$

current region

Alternatively, imposing rapidity cuts

Final remarks

Important to always keep track of the range of applicability of the formalism of fragmentation functions (self-consistency)

Requiring
$$R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$$
 to be small, simple test for current region

Kinematical constraints involve both P_{hT} and z_h

Within the available formalisms, fragmentation and fracture functions may overlap at low Q^2 (how low?)

At low values of Q^2 the notion of current region starts to fade. New formalism needed.