Longitudinal Double-Spin Asymmetries for Forward Di-jet Production in Polarized pp Collisions at $\sqrt{s} = 200 \text{ GeV}$

Ting Lin Indiana University, for the STAR Collaboration

June 29, 2016

Abstract

One of the primary goals of the STAR spin program is to determine the spin-dependent gluon distribution, ΔG , of the proton. Recent measurements of the longitudinal double-helicity asymmetry, A_{LL} , from inclusive jets place strong constraints on ΔG and, for the first time, find evidence for non-zero gluon polarization values for partonic momentum fraction x greater than 0.05. In contrast to inclusive jets, di-jet correlation measurements provide access to partonic kinematics, at leading order, and thus give better constraints on the behavior of ΔG as a function of gluon momentum fractions. Furthermore, di-jet measurements at forward rapidity probe the lower x values where ΔG is poorly constrained. Status of the first measurement of A_{LL} for di-jet with $-0.8 < \eta_1 < 0.8$ and $0.8 < \eta_2 < 1.8$, from 2009 proton+proton collisions at $\sqrt{s} = 200$ GeV will be presented.