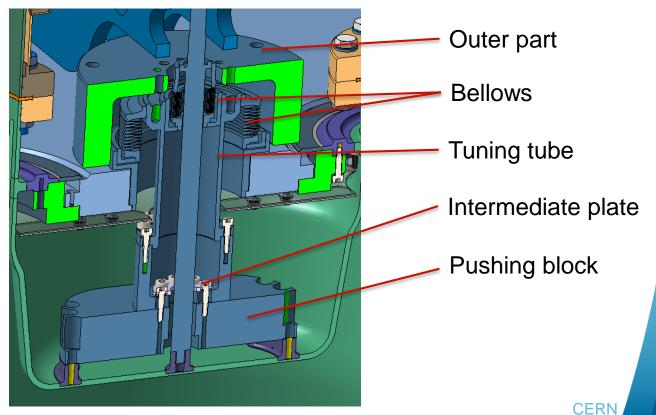


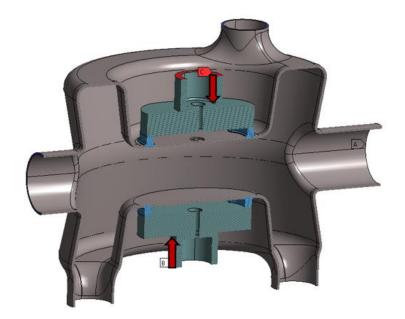
## HiLumi WP4 – Crab Cavities


#### Pre-tuner design – update Joanna Swieszek, Kurt Artoos, Carlo Zanoni



27.10.2016

## Purpose


- Improvements of the pre-tuner design
- Approval of the new design
- Analysing separately the critical parts
- Elasto-plastic analysis of whole assembly





# **Pushing block**

Tuning force 10000 N Fixed support in all cavity extremities



A: Static Structural Stress Intensity 3

Type: Stress Intensity

28/10/2016 14:20

227.95 Max

Unit: MPa

100

87.558

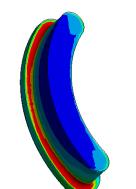
62.674

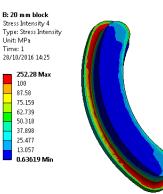
50.232

37.791

25.349

12.907


0.46496 Min

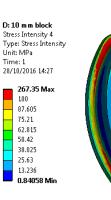

75.116

Time: 1

- Investigation of the stresses in bean shapes
- Decreasing pushing block thickness
- Elastic model (stresses values correct just for comparison purpose)

| Thickness    | Stress intensity in |
|--------------|---------------------|
| [mm]         | bean shape part     |
|              | [MPa]               |
| 33 (current) | 228                 |
| 20           | 252                 |
| 10           | 267                 |

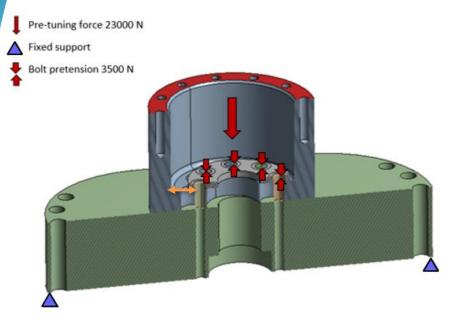




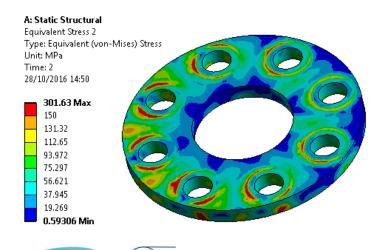

Unit: MPa

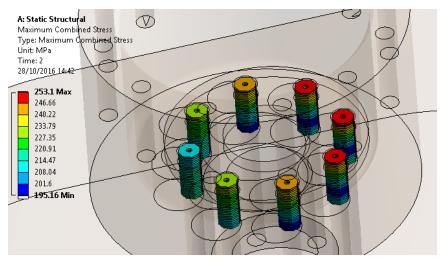
100

87.58


Time: 1



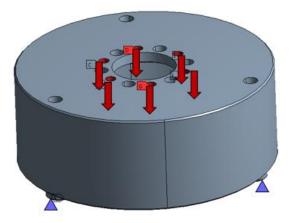




**CERN** 

## **Intermediate plate**

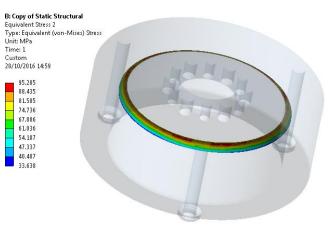


- Additional intermediate plate
- Allowing for 2 mm of offset in case of misalignment
- Check of the stresses in the intermediate plate and in the screws



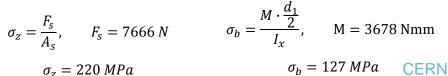



## **Outer part**


#### Force on each screw 6x 3833 N

Fixed support




| Thickness [mm] | Total Deformation<br>Maximum [mm] | Equivalent Stress 2 Maximum [MPa] |
|----------------|-----------------------------------|-----------------------------------|
| 12 (current)   | 0.11057                           | 95.285                            |
| 10             | 0.16319                           | 128.41                            |
| 8              | 0.27433                           | 193.42                            |
| 6              | 0.56577                           | 329.35                            |

- Possibility to increase tuning resolution by decreasing part thickness (to give more flexibility)
- Parametric model to compare stresses for different thickness cases



Screws connecting outer part with helium tank: 3x M8

Bending stress:



# **Applying tuning force**

- 6 screws for pushing
- 6 screws for pulling
- Maximum tuning force: 23kN (3833 N per screw)

#### M6 screw:

 $d_1 = 4.917 mm$ 

 $d_2 = 5.350 \text{ mm}$ 

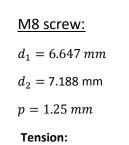
p = 1 mm

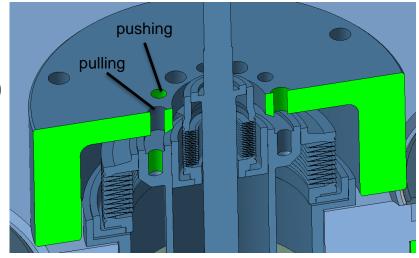
Tension:

 $\sigma_z = \frac{F_s}{A_s}$  $\sigma_z = 202 MPa$ 

**Torsional stress:** 

$$\tau = \frac{F_v \cdot d_2 \cdot \tan(\varphi^\circ + \rho^\circ)}{2 \cdot W_p}$$


 $K = \tan(\varphi + \rho) = 0.577$ 


$$\tau = \frac{F_{\nu} \cdot d_2 \cdot \mathbf{K}}{2 \cdot W_p} = 253.261 \, MPa$$

**Combined stress:** 

$$\sigma_V = \sqrt{\sigma_Z^2 + 3 \cdot \tau^2} = 482.6 MPa$$







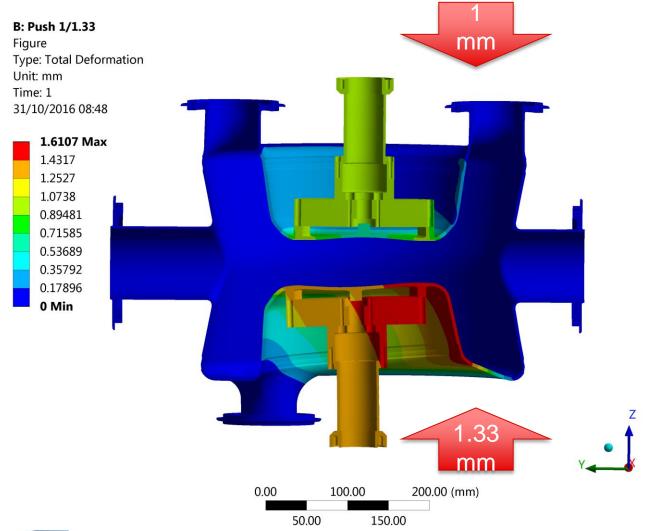
$$\sigma_z = \frac{F_s}{A_s}$$
$$\sigma_z = 110 MPa$$

**Torsional stress:** 

$$\tau = \frac{F_v \cdot d_2 \cdot \tan(\varphi^\circ + \rho^\circ)}{2 \cdot W_p}$$

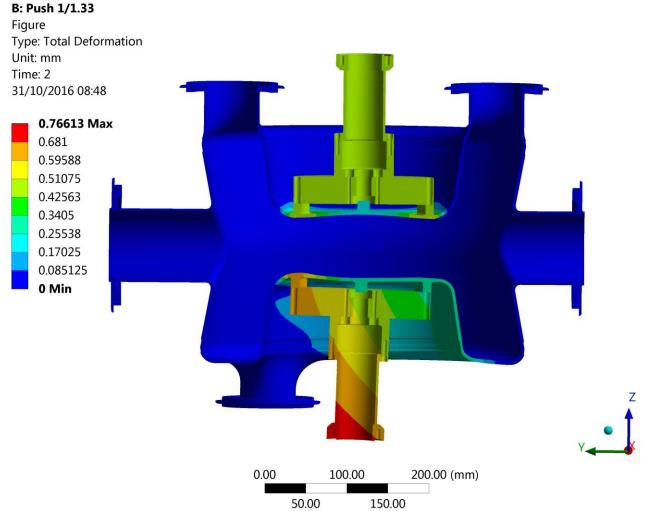
 $K = \tan(\varphi + \rho) = 0.571$ 

$$\tau = \frac{F_v \cdot d_2 \cdot \mathbf{K}}{2 \cdot W_p} = 136 \, MPa$$


**Combined stress:** 

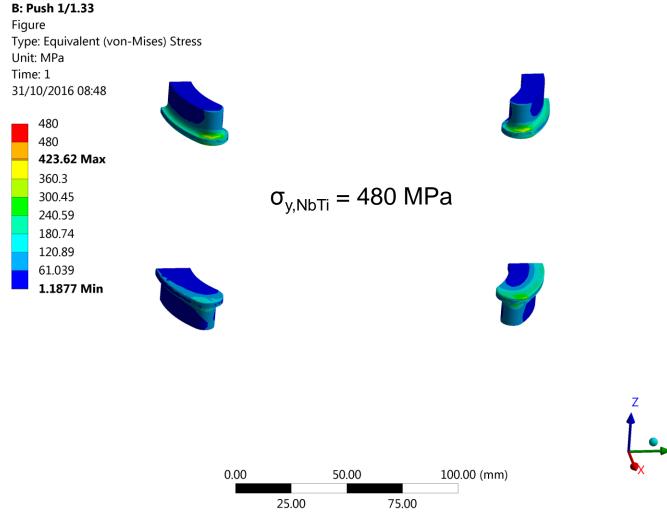
$$\sigma_V = \sqrt{\sigma_z^2 + 3 \cdot \tau^2} = 261 \, MPa$$

**Bigger safety factor** 


6

## **Elasto-plastic load: applied deformation**






## **Elasto-plastic load: residual deformation**





## **Elasto-plastic load: critical stress**





## Conclusions

- Elasto-plastic model approves pre-tuner improved design.
- Reducing pushing block thickness do not decrease stresses in the beam shapes, thick pre-tuner block was chosen.
- Improved design with intermediate plate allowing for assembly offset was approved.
- M8 screws guarantee bigger safety factor when applying the tuning force.
- To increase resolution, outer part connecting pre-tuner with helium tank could be more flexible.
- Francois Morel prepares 3D models and 2D drawings ST0805441\_01





#### Thank you for your attention!



