J/ψ photoproduction on nuclei

Vadim Guzey

Petersburg Nuclear Physics Institute (PNPI), National Research Center "Kurchatov Institute", Gatchina, Russia

1

Outline:

- Ultraperipheral collisions (UPCs) and gluon nuclear shadowing
- Gluon nuclear shadowing from J/ ψ photoproduction at the LHC
- Outlook and Conclusions

Workshop on LHCb Heavy Ion and Fixed Target Physics CERN, Jan 9-10, 2017

Ultraperipheral collisions (UPCs)

• Ions can interact at large impact parameters b >> $R_A+R_B \rightarrow$ ultraperipheral collisions (UPCs) \rightarrow strong interaction suppressed \rightarrow interaction via quasi-real photons, Fermi (1924), von Weizsäcker; Williams (1934)

- UPCs correspond to empty detector with only two lepton tracks
- Nuclear coherence by veto on neutron production by Zero Degree Calorimeters and selection of small pt
- Coherent photoproduction of vector mesons in UPCs:

$$\frac{d\sigma_{AA \to AAJ/\psi}(y)}{dy} = N_{\gamma/A}(y)\sigma_{\gamma A \to AJ/\psi}(y) + N_{\gamma/A}(-y)\sigma_{\gamma A \to AJ/\psi}(-y)$$

$$y = \ln[W^2/(2\gamma_L m_N M_V)]$$

$$= J/\psi \text{ rapidity}$$

$$= J/\psi \text{ rapidity}$$

$$N_{\gamma/Z}(k) = \frac{2Z^2 \alpha_{em}}{\pi} [\zeta K_0(\zeta) K_1(\zeta) - \frac{\zeta^2}{2} (K_1^2(\zeta) - K_0^2(\zeta))]$$

$$= Large \text{ photon energies } \zeta = k(2R_A/\gamma_L)$$

UPCs = γ **p and** γ **A interactions at unprecedentedly large energies**, Baltz *et al.*, The Physics of Ultraperipheral Collisions at the LHC, Phys. Rept. 480 (2008) 1

Nuclear shadowing

- Nuclear shadowing (NS) = suppression of cross section on a nucleus compared to sum of cross sections on individual nucleons: $\sigma_A < A \sigma_N$.
- Observed for beams of nucleons, pions, real and virtual photons, neutrinos, other hard probes of large energies (> 1 GeV)
- Explained by multiple rescattering of the projectile on target nucleons \rightarrow destructive interference among amplitudes for interaction with 1, 2, ...nucleons \rightarrow nucleons in rear of the nucleus "see" smaller (shadowed) flux: $\sigma_A \sim A^{2/3}$.

Figure 2: Graphs for pion-deuteron scattering.

• NS in photoproduction of J/ ψ , ψ (2S), Y on nuclei:

- new constraints on nuclear gluon distribution $g_A(x,\mu^2)$ at small x and models of NS: VG, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290; VG, Zhalov, JHEP 10 (2013) 207; JHEP 02 (2014) 046; VG, Strikman, Zhalov, EPJ C 74 (2014) 2942; VG, Kryshen, Zhalov, PRC 93 (2016) 055206

Gluon nuclear shadowing

- Gluon nuclear shadowing: $g_A(x,Q^2) < A g_N(x,Q^2)$ for small x.
- Nuclear PDFs extracted from (mostly) fixed-target DIS data using global QCD fits and also predicted by dynamical models:

- Gluon nPDF $g_A(x,\mu^2)$ is known with large uncertainties \rightarrow **I.Schienbein's talk**
- pA@LHC data help little and mostly in antishadowing region, Armesto et al, arXiv: 1512.01528; Eskola et al, JHEP 1310 (2013) 213; Eskola et al, arXiv:1612.075 (EPPS16 nPDFs)
- Future: Electron-Ion Collider in the US, Accardi et al, ArXiv:1212.1701; LHeC@CERN, LHEC Study Group, J. Phys. G39 (2012) 075001
- Option right now: Charmonium photoproduction in Pb-Pb UPCs@LHC

Exclusive J/ ψ photoproduction

• In leading logarithmic approximation of perturbative QCD and non-relativistic approximation for charmonium wave function $(J/\psi, \psi(2S))$:

$$\frac{d\sigma_{\gamma T \to J/\psi T}(W, t=0)}{dt} = C(\mu^2) \left[x G_T(x, \mu^2) \right]^2$$

M. Ryskin (1993)

 $x = \frac{M_{J/\psi}^2}{W^2}, \qquad \mu^2 = M_{J/\psi}^2/4 = 2.4 \text{ GeV}^2 \quad C(\mu^2) = M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s(\mu^2)/(48\alpha_{em}\mu^8)$

• In collinear factorization for exclusive processes, at LO in α_S and NR expansion for J/ ψ wave function:

$$\frac{d\sigma_{\gamma T \to J/\psi T}(W, t=0)}{dt} = \frac{16\pi^{3}\Gamma_{ee}}{3\alpha_{\rm e.m.}M_{V}^{5}} \left[\alpha_{S}(\mu^{2})H^{g}(\xi, \xi, t=0, \mu^{2})\right]^{2}$$

• NLO corrections are very large, Ivanov, Schafer, Szymanowski, Krasninov, EPJ C 75 (2015) 2, 75; Jones, Martin, Ryskin, Teubner, J. Phys. G43 (2015), no.3, 035002, but can be tamed by choice of factorization scale μ =m_c and other tricks, Jones et al, Eur.Phys.J. C76 (2016) no.11, 633.

• I will stay at LO in my talk.

Exclusive J/ ψ photoproduction (2)

- At high energies (small ξ) and LO in α_S , GPDs can be connected to PDFs in a weakly model-dependent way.
- At low μ_0 , $x_{1,2} \gg \xi \rightarrow$ skewness can be neglected

• All skewness at $\mu > \mu_0$ due to evolution, Frankfurt, Freund, VG, Strikman, PLB 418 (1998) 345; Shuvaev et al., RPD 60 (1999) 014015

$$H^{g}(\xi,\xi,t=0,\mu^{2}) = R_{g}xg(x_{B},\mu^{2})$$

$$R_g = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(4+\lambda)} \approx 1.2, \text{ for } xg \sim 1/x^{\lambda} \text{ with } \lambda \approx 0.2$$

• At LO, this ansatz somewhat overestimates HERA DVCS data, Freund, McDermott,

Strikman, PRD67 (2003) 036001; Belitsky, Mueller, Kirchner, NPB 629 (2002) 323.

Coherent J/ ψ photoproduction on nuclei

• Application to nuclear targets:

$$S(W_{\gamma p}) = \begin{bmatrix} \frac{\sigma_{\gamma P b \to J/\psi P b}}{\sigma_{\gamma P b \to J/\psi P b}} \end{bmatrix}^{1/2} = \kappa_{A/N} \frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} = \kappa_{A/N} R_g$$

experiment IA=Impulse Approximation From QCD fits or theory (LTA)

• Side remark: we choose $\mu^2=3$ GeV² to correctly reproduce W-dependence of HERA data on $\gamma p \rightarrow J/\psi p$.

 Combination of Gribov-Glauber NS model with QCD factorization theorems for inclusive and diffractive DIS → shadowing for individual partons j, Frankfurt, Strikman (1999)

 Interaction with 2 nucleons: model-indep via diffractive PDFs:

$$\sigma_2^j(x) = \frac{16\pi}{xf_{j/N}(x,\mu^2)} \int_x^{0.1} dx_P \beta f_{j/N}^{D(4)}(x,\mu^2,x_P,t=0)$$

• Interaction with \geq 3 nucleons: via soft hadronic fluctuations of γ^*

$$\sigma_{\rm soft}(x) = \frac{\int d\sigma P_{\gamma}(\sigma)\sigma^3}{\int d\sigma P_{\gamma}(\sigma)\sigma^2}$$

 $P(\sigma)$ is probability to interact with Xsection σ

Quasi-eikonal approximation in low-x limit, Frankfurt, Guzey, Strikman 2012:

$$xf_{j/A}(x,\mu^2) = Af_{j/N}(x,\mu^2) - \frac{2\sigma_2^j f_{j/N}(x,\mu^2)}{[\sigma_{\text{soft}}^j(x)]^2} \int d^2b \left(e^{-\frac{1}{2}\sigma_{\text{soft}}^j(x)T_A(b)} - 1 + \frac{\sigma_{\text{soft}}^j(x)}{2}T_A(b) \right)$$

Leading twist nuclear shadowing model (2)

- Model gives nuclear PDFs at μ^2 =3-4 GeV² for subsequent DGLAP evolution.
- Name "leading twist" since diffractive structure functions/PDFs measured at HERA scale with Q².
- Gluon diffractive PDFs are large, ZEUS, H1 2006 \rightarrow predict large shadowing for $g_A(x,\mu^2)$, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

Results of DGLAP evolution: from Q²=4

For quarks, the agreement between LTA and EPS09 is much better.

Comparison to SPb from ALICE UPC data

- Good agreement with ALICE data on coherent J/ ψ photoproduction in Pb-Pb UPCs@2.76 TeV \rightarrow first direct evidence of large gluon NS, Rg(x=0.001) \approx 0.6.
- Similarly good description using EPS09+CTEQ6L.
- Cannot be described by simple versions of the dipole model, Lappi, Mantysaari 2013
- We predict similar suppression for J/ψ and $\psi(2S) \rightarrow$ tension with ALICE data on $\psi(2S)$ photoproduction in Pb-Pb UPCs at y=0 \rightarrow wait for better precision Run 2 data.

Coherent J/ ψ photoproduction in Pb-Pb UPCs with forward neutron emission

• UPCs can be accompanied by e.m. excitation of colliding ions followed by forward neutron emission, Baltz, Klein, Nystrand, PRL 89 (2002) 012301

• CMS data in OnXn-channel converted to the total coherent cross section agrees very well with our predictions of large gluon shadowing, CMS Collab., arXiv:1605.06966

11

LT shadowing: Impact parameter dependence

- Shadowing arises from rescattering on target nucleons at given impact parameter b.
- Removing integral over b \rightarrow impact-parameter-dependent nuclear PDFs:

- Can be only indirectly determined using global QCD fits, EPS09s nPDFs, Helenius et al (2012)
- Can be probed and tested in:

12

Accessing transverse nuclear gluon distribution

• Measurement of t-dependence of $\gamma A \rightarrow J/\psi A$: complementary constraint on $g_A(x,Q^2)$ and determination of impact parameter dependent nPDF $g_A(x,b,Q^2)$

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt} = \frac{d\sigma_{\gamma p \to J/\psi p}(t=0)}{dt} \left(\frac{R_{g,A}}{R_{g,p}}\right)^2 \left[\frac{\int d^2 b \, e^{i\vec{q}_\perp \vec{b}} g_A(x,b,\mu^2)}{Ag_p(x,\mu^2)}\right]^2$$

• Impact parameter gluon nuclear shadowing leads to shift of t-dependence \rightarrow can be interpreted as 5-11% broadening in impact parameter space of gluon nPDF:

J/ψ photoproduction on nuclei in fixed-target kinematics

• Collision energies are lower \rightarrow nuclear gluons are probed at higher x. For Pb beam, $\sqrt{s_{NN}}=72$ GeV, x \approx 0.02 at y=0:

- complimentary to ALICE and CMS measurements
- cleaner theoretical interpretation using both global fits and LTA
- still very interesting since affects $g_A(x,\mu^2)$ at all x via momentum sum rule
- possibility to vary nuclear targets
- possibility to study Pomeron-Odderon fusion mechanism in pp and pA UPCs, Lansberg, Szymanowski, Wagner, JHEP 1509 (2015) 087
- Fixed-target kinematics allows for better studies of nuclear break-up than collider mode (pT measurements, nuclear fragment detection):
 - understanding of incoherent background for coherent photoproduction, tuning of UPC MC STARLIGHT
 - resolution of discrepancy between ALICE data on incoherent J/ ψ photoproduction in Pb-Pb UPCs at $\sqrt{s_{NN}}=2.76$ TeV and large nuclear gluon shadowing, VG, Strikman, Zhalov, EPJ C 74 (2014) 2942
 - possible insight into origin of excess of low-pt J/ ψ in peripheral Pb-Pb collisions, which could be due to photoproduction on nucleus fragments, ALICE, PRL 116 (2016) 222301

Incoherent J/ψ photoproduction in Pb-Pb UPCs@LHC

• Leading twist theory of nuclear shadowing allows one to make predictions without introducing extra parameters: VG, Strikman, Zhalov, EPJ C 74 (2014) 2942

$$S_{\rm incoh}(W_{\gamma p}) \equiv \frac{d\sigma_{\gamma A \to J/\psi A'}^{\rm pQCD}(W_{\gamma p})/dt}{Ad\sigma_{\gamma p \to J/\psi p}^{\rm pQCD}(W_{\gamma p})/dt} = \frac{1}{A} \int d^2 \vec{b} T_A(b) \left[1 - \frac{\sigma_2}{\sigma_3} + \frac{\sigma_2}{\sigma_3} e^{-\sigma_3/2T_A(b)}\right]^2$$

$$\frac{d\sigma_{AA\to AA'J/\psi}(y)}{dy} = N_{\gamma/A}(y)\sigma_{\gamma A\to J/\psi A'}(y) + N_{\gamma/A}(-y)\sigma_{\gamma A\to J/\psi A'}(-y)$$

- ... and predicts too much shadowing
- One possible source of discrepancy: contribution of nucleon dissociation $\gamma + N \rightarrow J/\psi + Y$ which can be singled out by different t-dependence \rightarrow fixed-target might give advantage

Conclusions

- Coherent photoproduction of J/ ψ on nuclei in UPCs@LHC gives direct access to nuclear gluon distribution $g_A(x,\mu^2)$ down to $x \approx 10^{-3}$ at $\mu^2 \approx 3$ GeV².
- ALICE and CMS data give first evidence of large nuclear gluon shadowing, which is consistent with predictions of LT NS model and EPS09 nPDFs.
- Measurement of t dependence of $\gamma A \rightarrow J/\psi A$ will access 3D nuclear gluon distribution $g_A(x,b,Q^2)$.
- Photoproduction of J/ψ in UPCs in fixed-target kinematics has certain advantages:
 - large x allows for smaller theoretical uncertainty in predictions for $g_A(x,\mu^2)$
 - detection of nuclear fragments and t-dependence measurements constrain incoherent photoproduction and help to solve several outstanding problems.
- UPCs@LHC = forerunner of measurements of nuclear gluon distributions at an Electron-Ion Collider.