J/ ψ photoproduction on nuclei

Vadim Guzey

Petersburg Nuclear Physics Institute (PNPI), National Research Center "Kurchatov Institute", Gatchina, Russia

1

Outline:

- Ultraperipheral collisions (UPCs) and gluon nuclear shadowing
- Gluon nuclear shadowing from J/ψ photoproduction at the LHC
- Outlook and Conclusions

Workshop on LHCb Heavy Ion and Fixed Target Physics CERN, Jan 9-10, 2017

Ultraperipheral collisions (UPCs)

• Ions can interact at large impact parameters $b \geq R_A+R_B \rightarrow$ ultraperipheral collisions (UPCs) \rightarrow strong interaction suppressed \rightarrow interaction via quasireal photons, Fermi (1924), von Weizsäcker; Williams (1934)

- UPCs correspond to empty detector with only two lepton tracks
- Nuclear coherence by veto on neutron production by Zero Degree Calorimeters and selection of small pt
- Coherent photoproduction of vector mesons in UPCs:

$$
\frac{d\sigma_{AA \to AAJ/\psi}(y)}{dy} = N_{\gamma/A}(y)\sigma_{\gamma A \to AJ/\psi}(y) + N_{\gamma/A}(-y)\sigma_{\gamma A \to AJ/\psi}(-y)
$$
\nPhoton flux:

\nPhoton flux from QED:

\nhigh intensity ~ Z²

\n– high intensity ~ Z²

\n– large photon energies
$$
\zeta = k(2R_A/\gamma_L)
$$

 B ² Paltz et al. The Phy Baltz *et al.*, The Physics of Ultraperipheral Collisions at the LHC, Phys. Rept. 480 (2008) 1 UPCs = γ p and γ A interactions at unprecedentedly large energies,

analysis in ally Nuclear shadowing \blacksquare <u>of F2D(x) matter for the extraction of F2P(x) from</u> the second the nucleon $\frac{1}{2}$

- Nuclear shadowing (NS) = suppression of cross section on a nucleus compared to sum of cross sections on individual nucleons: $\sigma_A < A \sigma_N$.
- Observed for beams of nucleons, pions, real and virtual photons, neutrinos, other hard probes of large energies (> 1 GeV) tion board of nuclearity proncy roal and virtual prior. Nuclear shadowing arises due to destructive quantum-mechanical interference among the scattering
- Explained by multiple rescattering of the projectile on target nucleons \rightarrow destructive interference among amplitudes for interaction with 1, 2, ... nucleons \rightarrow nucleons in rear of the nucleus "see" smaller (shadowed) flux: $\sigma_A \sim A^{2/3}$. where each term corresponds to the interaction with a given aris in rear of the nucleus isee isfitane

Figure 2: Graphs for pion-deuteron scattering.

• NS in photoproduction of J/ ψ , ψ (2S), Y on nuclei:

- new constraints on nuclear gluon distribution $g_A(x,\mu^2)$ at small x and models of NS: vG, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290; VG, Zhalov, JHEP 10 (2013) 207; JHEP 02 (2014) 046; VG, Strikman, Zhalov, EPJ C 74 (2014) 2942; VG, Kryshen, Zhalov, PRC 93 (2016) 055206 constraints on nuclear gluon distribution $g_{\lambda}(x)$ \geq 1 − 120 (2013) 290, VG, 2
- 2010 MQ Korders 751 Zhalov, PRC 93 (2016) 0552

Gluon nuclear shadowing <u>Sidon habibar bhadowing</u>

- •Gluon nuclear shadowing: $g_A(x,Q^2)$ < A $g_N(x,Q^2)$ for small x. $\frac{1}{2}$ in Ref. in Ref. in Ref. in Ref. (Fig. 4). Above the parameters scale $\frac{1}{2}$ in $\frac{1}{2}$ in
- •Nuclear PDFs extracted from (mostly) fixed-target DIS data using global QCD fits and also predicted by dynamical models: θ the sea θ •Nuclear PDFs extracted from (mostly) fixed-target DIS data usir

- Gluon nPDF $g_A(x,\mu^2)$ is known with large uncertainties \rightarrow **I.Schienbein's talk** nuclear modification for inclusive pion production in d+Au collisions at midrapidity.
- The largest difference and inferences and differences and differences and differences $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $\text{PGL}(3, 2.3.$ The original order to the large difference or and $\text{PGL}(3, 3.3.$ The DIS and $\text{PGL}(2, 3.3.$ • pA@LHC data help little and mostly in antishadowing region, Armesto et al, arXiv: 1512.01528; Eskola et al, JHEP 1310 (2013) 213; Eskola et al, arXiv:1612.075 (EPPS16 nPDFs)
- Future: Electron-Ion Collider in the US, Accardi et al, ArXiv:1212.1701; LHeC@CERN, LHEC Study Group, J. Phys. G39 (2012) 075001
- Option right now: Charmonium photoproduction in Pb-Pb UPCs@LHC different the resulting R^A

Exclusive J/ ψ photoproduction diffractive process. There is a colour exchange in this case is a colour exchange in this case is a colour exchange in this case is a colour exchange in the colour exchange in the colour exchange in the colour exchange in φ photoproduction

. In leading logarithmic approximation of perturbative QCD and non-relativistic approximation for charmonium wave function (J/ ψ , $\psi(2{\rm S})$): \overline{a} The goal of the goal of ψ , ψ (ψ). over the relative momenta of c6^quarks k=k' in *J/7 J* n**-relativistic ~7** *qJ*

$$
\frac{d\sigma_{\gamma T \to J/\psi T}(W, t=0)}{dt} = C(\mu^2) \left[x G_T(x, \mu^2) \right]^2
$$
 M. Ryskin (1993)

M. Ryskin (1993)

 $x = \frac{M_J^2}{W}$ $\mu^2 = M_{J/\psi}^2 / 4 = 2.4 \text{ GeV}^2$ $C(\mu^2) = M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s(\mu^2) / (48 \alpha_{em} \mu^8)$ $T(u^2) = M_{\rm M}^3 \Gamma_{\rm ee} \pi^3 \alpha_e (u^2)/(48 \alpha_{em} u^8)$ $\langle v^{c} \rangle$ mass of J/ψ denotes $\langle v^{c} \rangle$ (see empty) 2

• In collinear factorization for exclusive processes, at LO in α_s and NR expansion for J/ψ wave function:

$$
\frac{d\sigma_{\gamma T \to J/\psi T}(W,t=0)}{dt} = \frac{16\pi^3 \Gamma_{ee}}{3\alpha_{\rm e.m.}M_V^5} \Big[\alpha_S(\mu^2)H^g(\xi,\xi,t=0,\mu^2)\Big]^2
$$

• NLO corrections are very large, Ivanov, Schafer, Szymanowski, Krasninov, EPJ C 75 (2015) 2, 75; Jones, Martin, Ryskin, Teubner, J. Phys. G43 (2015), no.3, 035002, but can be tamed by choice of factorization scale $\mu = m_c$ and other tricks, Jones et al, Eur. Phys. J. C76 (2016) no. 11, 633.

• I will stay at LO in my talk.

Exclusive J/ ψ photoproduction (2) $\sum_{i=1}^n$ **q** $\frac{1}{2}$ *dxRN*

- At high energies (small ξ) and LO in α_S, GPDs can be connected to PDFs in a weakly model-dependent way. contain $\frac{1}{2}$ and $\frac{1}{2}$ of $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ explore the possibility that, in the small *x*,j!1 region, the
- '' off-diagonal behavior comes mainly from the diagonal behavior comes mainly from the diagonal behavior comes • At low μ_0 , $x_{1,2} \gg \xi \rightarrow$ skewness can be neglected of the evolution the momentum fraction carried by parton *i*

> μ_0 due to evolution, Frankfurt, Fre ; Shuvaev et al., RPD 60 (1999) 014015 the *x*;j domain at the high scale (m25*Q*2), will satisfy • All skewness at μ > μ_0 due to evolution, Frankfurt, Freund, VG, Strikman, PLB 418 (1998) 345; Shuvaev et al., RPD 60 (1999) 014015

$$
H^g(\xi, \xi, t = 0, \mu^2) = R_g x g(x_B, \mu^2)
$$

$$
R_g = \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(4+\lambda)} \approx 1.2
$$
, for $xy \sim 1/x^{\lambda}$ with $\lambda \approx 0.2$

• At LO, this ansatz somewhat overestimates HERA DVCS data, Freund, McDermott,

Strikman, PRD67 (2003) 036001; Belitsky, Mueller, Kirchner, NPB 629 (2002) 323.

Coherent J/ ψ **photoproduction on nuclei**

• Application to nuclear targets:

$$
\sigma_{\gamma A \to J/\psi A}(W_{\gamma p}) = \frac{(1 + \eta_A^2)R_{g,A}^2}{(1 + \eta^2)R_g^2} \frac{d\sigma_{\gamma p \to J/\psi p}(W_{\gamma p}, t = 0)}{dt} \left[\frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} \right]^2 \Phi_A(t_{\text{min}})
$$
\nSmall correction $k_{AN} \approx 0.90$ -95 From HERA and LHCb. Gluon shadow. R_g From nuclear form factor: approximation

\n• Nuclear suppression factor $S \to$ direct access to R_g

\n
$$
\Phi_A(t_{\text{min}}) = \int_{-\infty}^{t_{\text{min}}} dt |F_A(t)|^2
$$

$$
S(W_{\gamma p}) = \left[\frac{\sigma_{\gamma Pb \to J/\psi Pb}}{\sigma_{\gamma Pb \to J/\psi Pb}^{IA}}\right]^{1/2} = \kappa_{A/N} \frac{G_A(x,\mu^2)}{AG_N(x,\mu^2)} = \kappa_{A/N} R_g
$$

experiment
1A=Impulse Approximation

• Side remark: we choose $\mu^2 = 3$ GeV² to correctly reproduce W-dependence of HERA data on $\gamma p \rightarrow J/\psi p$.

• Combination of Gribov-Glauber NS model with QCD factorization theorems for inclusive and diffractive $DIS \rightarrow$ shadowing for individual partons j, Frankfurt, Strikman (1999) σ and dimatuve $D\cup \rightarrow$ shadowing for mu

• Interaction with 2 nucleons:

Interaction with 2 nucleons:
$$
\sigma_2^j(x) = \frac{16\pi}{x f_{j/N}(x,\mu^2)} \int_x^{0.1} dx_P \beta f_{j/N}^{D(4)}(x,\mu^2, x_P, t=0)
$$

• Interaction with ≥ 3 nucleons: via $\sigma_{\text{max}} = 0$ in the derivation of our master $\sigma_{\text{cost}}(x) = \frac{1}{2}$ is the use of the use soft hadronic fluctuations of γ^* and $\sigma^{\rm soft}(\mu)=\overline{\int d\sigma P_\gamma(\sigma)\sigma^2}$ interact with

$$
ation with ≥ 3 nucleons: via
$$

adronic fluctuations of γ^*

$$
σsoft(x) = \frac{\int dσ P_{\gamma}(\sigma) \sigma^3}{\int dσ P_{\gamma}(\sigma) \sigma^2}
$$

). (45)

 $P(σ)$ is probability to interact with Xsection σ

Cj with the parton distribution functions of the target *fj* (*j* is the parton flavor): **The company of the company** • Quasi-eikonal approximation in low-x limit, Frankfurt, Guzey, Strikman 2012:

*, Q*²

$$
xf_{j/A}(x,\mu^2) = Af_{j/N}(x,\mu^2) - \frac{2\sigma_2^j f_{j/N}(x,\mu^2)}{[\sigma_{\text{soft}}^j(x)]^2} \int d^2b \left(e^{-\frac{1}{2}\sigma_{\text{soft}}^j(x)T_A(b)} - 1 + \frac{\sigma_{\text{soft}}^j(x)}{2}T_A(b) \right)
$$

Leading twist nuclear shadowing model (2)

- Model gives nuclear PDFs at μ^2 =3-4 GeV² for subsequent DGLAP evolution.
- Name "leading twist" since diffractive structure functions/PDFs measured at HERA scale with Q2.
- Gluon diffractive PDFs are large, $z \in U$ s, $H1 2006 \rightarrow$ predict large shadowing for $g_A(x,\mu^2)$, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

For quarks, the agreement between LTA and EPS09 is much better.

Comparison to SPb from ALICE UPC data extracted in the analysis \mathcal{L} of the ALICE data on \mathcal{L} **Companson to SPb from 7** 0 ALIVE UPV UAID

- Good agreement with ALICE data on coherent J/ψ photoproduction in Pb-Pb UPCs@2.76 TeV \rightarrow first direct evidence of large gluon NS, Rg(x=0.001) ≈ 0.6. $\tilde{\mathcal{D}}$ $\widehat{\omega}$ 2. Good ag
PCs*@*2 $\overline{}$ e g 1 J/ η coherent J/ ψ photoproduction in Pb-Pb
ce of large gluon NS Rg(x=0,001) \approx 0.6 p e or large gluon ivo, $Rg(x=0.001) \approx 0.8$
- · Similarly good description using EPS09+CTEQ6L. .
.. <u>JOL</u> \overline{C} of the leading theoretical predictions: the leading twist theory of nuclear shadowing (12) (the curvesshadowing (12)
- Cannot be described by simple versions of the dipole model, Lappi, Mantysaari 2013 not be described by simple ve , u_1 e dinole model Lappi Mantysaari labeled "DTA+CTEQ6 MDDED", pand the dipole model, Lappi, Mantysaari 2013
- We predict similar suppression for J/ ψ and ψ (2S) \rightarrow tension with ALICE data on ψ (2S) photoproduction in Pb-Pb UPCs at y=0 $\;\rightarrow$ wait for better precision Run 2 data. $\begin{array}{c}\n\hline\n\end{array}$ \mathcal{E} 28) stoppion with ALI ψ and $\psi(\overline{\mathrm{2S}}) \rightarrow$ tension with ALICE data on α y β β want for bottor problamental α data.

Coherent J/ photoproduction in Pb-Pb UPCs with forward neutron emission

• UPCs can be accompanied by e.m. excitation of colliding ions followed by forward neutron emission, Baltz, Klein, Nystrand, PRL 89 (2002) 012301

Pb g **OO** 00 200000 000000 P_b* $Pb*$ Pb

• CMS data in 0nXn-channel converted to the total coherent cross section agrees very well with our predictions of large gluon shadowing, CMS Collab., arXiv:1605.06966

11

LT shadowing: Impact parameter dependence

- Shadowing arises from rescattering on target nucleons at given impact parameter b.
- Removing integral over $b \rightarrow \text{impact-parameter-dependent nuclear PDFs}$:

- \cdot *Can be only indirectly determined using alobal OCD f* • Can be only indirectly determined using global QCD fits, EPS09s nPDFs, Helenius et al (2012)
- Can be probed and tested in:

centrality dependence of hard pA/AA processes, Helenius et al (2012) j/A[/](AT_Af_{j/N}) t dependence of exclusive γ^* A and γ^* A processes, e.g., γ^* A $\rightarrow \gamma$ A, Frankfurt, VG, $\text{Strikman 2012}, \gamma A \rightarrow \text{MVA}, \text{VG}, \text{Strikpian}, \text{Zhalov}, \text{arXiv:1611.05471}.$ 0.5 ubar, Ca-40 gluon, Ca-40

12

Accessing transverse nuclear gluon distribution 100) transvers W=62 GeV RHIC

• Measurement of t-dependence of $\gamma A \rightarrow J/\psi A$: complementary constraint on $g_A(x,Q^2)$ and determination of impact parameter dependent nPDF $g_A(x,b,Q^2)$ $\overline{}$ d ence of νA \overline{y} ι
Μ
Ω

$$
\frac{d\sigma_{\gamma A\to J/\psi A}}{dt}=\frac{d\sigma_{\gamma p\to J/\psi p}(t=0)}{dt}\left(\frac{R_{g,A}}{R_{g,p}}\right)^2\left[\frac{\int d^2b\, e^{i\vec{q}_\perp\vec{b}}g_A(x,b,\mu^2)}{Ag_p(x,\mu^2)}\right]^2
$$

• Impact parameter gluon nuclear shadowing leads to shift of t-dependence \rightarrow can be interpreted as **5-11% broadening** in impact parameter space of gluon nPDF: sar ondu
l<mark>aning</mark> in

J/ photoproduction on nuclei in fixed-target kinematics

• Collision energies are lower \rightarrow nuclear gluons are probed at higher x. For Pb beam, $\sqrt{s_{NN}}$ =72 GeV, $x \approx 0.02$ at y=0:

- ➡ complimentary to ALICE and CMS measurements
- ➡ cleaner theoretical interpretation using both global fits and LTA
- \rightarrow still very interesting since affects $g_A(x,\mu^2)$ at all x via momentum sum rule
- ➡ possibility to vary nuclear targets
- ➡ possibility to study Pomeron-Odderon fusion mechanism in pp and pA UPCs, Lansberg, Szymanowski, Wagner, JHEP 1509 (2015) 087
- Fixed-target kinematics allows for better studies of nuclear break-up than collider mode (pT measurements, nuclear fragment detection):
	- ➡ understanding of incoherent background for coherent photoproduction, tuning of UPC MC STARLIGHT
	- \rightarrow resolution of discrepancy between ALICE data on incoherent J/ ψ photoproduction in Pb-Pb UPCs at $\sqrt{s_{NN}}$ =2.76 TeV and large nuclear gluon shadowing, vG, Strikman, Zhalov, EPJ C 74 (2014) 2942
	- \rightarrow possible insight into origin of excess of low-pt J/ ψ in peripheral Pb-Pb collisions, which could be due to photoproduction on nucleus fragments, ALICE, PRL 116 (2016) 222301

Incoherent J/ψ photoproduction in Pb-Pb UPCs@LHC upper limit on the predicted nuclear shadowing. Incoherent J/w photoproduction in Pb-Pb UPCs@LHC

• Leading twist theory of nuclear shadowing allows one to make predictions without introducing extra parameters: $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2$ • Leading twist theory of nuclear shadowing allows one to make predictions and they interact electromagnetically via emission of \mathbf{r}_i and \mathbf{r}_i and account the incoherent contribution associated with the nucleon dissociation γ + N → VG, Strikman, Zhalov,EPJ C 74 (2014) 2942

$$
S_{\text{incoh}}(W_{\gamma p}) \equiv \frac{d\sigma_{\gamma A \to J/\psi A'}^{\text{pQCD}}(W_{\gamma p})/dt}{Ad\sigma_{\gamma p \to J/\psi p}^{\text{pQCD}}(W_{\gamma p})/dt} = \frac{1}{A} \int d^2 \vec{b} \, T_A(b) \left[1 - \frac{\sigma_2}{\sigma_3} + \frac{\sigma_2}{\sigma_3} e^{-\sigma_3/2T_A(b)}\right]^2
$$

$$
\frac{d\sigma_{AA\rightarrow AA'J/\psi}(y)}{dy}=N_{\gamma/A}(y)\sigma_{\gamma A\rightarrow J/\psi A'}(y)+N_{\gamma/A}(-y)\sigma_{\gamma A\rightarrow J/\psi A'}(-y)\sum_{3.5}^{4.0}\left[\begin{array}{c}1\\ \bullet\\ \text{ALICE coherent}\\ \text{LTA coherent}\\ \text{LTA coherent}\end{array}\right]
$$

- and predicts too much shadowing $\left[\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \right]$
- $\frac{3}{2}$ which can be singled out by different give advantage **cases cases and incoherent cases** • One possible source of discrepancy: $\begin{bmatrix} \frac{2}{5} & \frac{1}{20} & \frac{1}{5} \\ \frac{1}{20} & \frac{1}{5} & \frac{1}{20} & \frac{1}{5} \end{bmatrix}$ contribution of nucleon dissociation $\gamma + N \to J/\psi + Y \frac{2}{9}^{2.0}$ which can be singled out by different
t-dependence whixed-target might t-dependence \rightarrow fixed-target might

 $\overline{1}$

Conclusions

- Coherent photoproduction of J/ψ on nuclei in UPCs@LHC gives direct access to nuclear gluon distribution $g_A(x,\mu^2)$ down to $x \approx 10^{-3}$ at $\mu^2 \approx 3$ GeV².
- ALICE and CMS data give first evidence of large nuclear gluon shadowing, which is consistent with predictions of LT NS model and EPS09 nPDFs.
- Measurement of t dependence of $\gamma A \rightarrow J/\psi A$ will access 3D nuclear gluon distribution $g_A(x,b,Q^2)$.
- Photoproduction of J/ ψ in UPCs in fixed-target kinematics has certain advantages:
	- \rightarrow large x allows for smaller theoretical uncertainty in predictions for $g_A(x,\mu^2)$
	- ➡ detection of nuclear fragments and t-dependence measurements constrain incoherent photoproduction and help to solve several outstanding problems.
- UPCs@LHC = forerunner of measurements of nuclear gluon distributions at an Electron-Ion Collider.