MEDICAL APPLICATIONS: PET

Investigating DOI

Introduction

PET-scanners are essential devices in the medical industry. A β^+- source is injected into the patient's body and emits positrons that annihilate with electrons and emit back-to-back photons, which are detected.

PET-scans close to the body entail a loss of resolution by not having the right information about the depth of interaction (DOI). Is there a useful relationship between the total light recorded (P_{tot}) and the amount of light that hits the crystal of interaction (p_{max})?

Hypothesis

The ratio between the light collected by the detector in front of a given crystal and the total light collected by all the detectors is correlated to DOI of an incident gamma ray.

Project Overview

The aim of the project is to develop a setup that will prove this hypothesis and find out how reliable the new method is.

Variables

Controlled variables

- Back-to-back production of 511 keV photons
- The relative positions of the single crystal and the decay source to the crystal matrix
- The dimensions of the crystals

Dependent variables

- P_{tot}
- p_i: mean x-position
- v: mean y-position
- w: $p_{\text{max}}/P_{\text{tot}}$

Procedure

Step 1

Alignment

Step 2

Electronic setup

Step 3

Measurements

Step 4

Data analysis

Results

Materials

- Na22
- Scintillator
- Photomultiplier: SiPM
- Digital caliper
- Reflector
- ADC-channel

Conclusion

It is proven that there is a correlation between the DOI and the ratio of p_{max} and P_{tot} and it has shown to be proportional. Therefore this method will improve the PET scans precision and help in the diagnose and intervention of cancer and other clinical conditions.

Literature