
Witek Pokorski (CERN) for the GeantV development team

GeantV – I/O, MCTruth and Validation Repository

Outline

 GeantV input

 GeantV output

 hits

 kinematics

 Physics validation repository

 Conclusion

2geant-dev@cern.ch

October 2016

GeantV Input

 Simulation input
 particles to be transported through the detector

 Realistic collision events produced by Monte Carlo event generators
(Pythia8, Herwig++, etc)

 Single particles (like the test beam) to study particular response

 Use of interface (event record) make the generation and the
simulation steps independent
 GeantV does not ‘care’ where the particles are coming from

 Simulation threads concurrently process particles from the input

October 2016

geant-dev@cern.ch 3

HepMC as GeantV input format

October 2016

geant-dev@cern.ch 4

typical time for 13 TeV pp
event ~o(1ms)(negligible
compared to simulation
step)

Particles fed

into concurrent

simulation

threads

GeantV input implementation

 interface implemented in HepMCGenerator class

 depends (of course) on HepMC

 can read HepMC ascii and root files

 automatically recognizes them by extension

 selects stable (outgoing) particles from the event

 applies (if any) Eta, Phi, and momentum cuts

October 2016

geant-dev@cern.ch 5

Status of GeantV Input

 implementation complete and fully functional

 based on HepMC3 event record

 nothing pending for short term development

October 2016

geant-dev@cern.ch 6

GeantV Output

 hits

 kinematics (MCTruth)

October 2016

geant-dev@cern.ch 7

GeantV hits

 Physics simulation produces ‘hits’ i.e. energy depositions

in the sensitive parts of the detector

 Those hits are produced concurrently by all the simulation

(TransportTracks) threads

 Thread-safe queues have been implemented to handle

asynchronous generation of hits by several threads

October 2016

geant-dev@cern.ch 8

GeantV output threads

 (several) TransportTracks threads generate hits
 GeantFactory machinery takes care of grouping the hits in HitBlocks

and putting them in a queue(s)

 two possible approaches
 serialization done within (one) output thread

 discovered a bottleneck

 performing serialization within each transport thread solved the
problem

 ‘writing to disc’ implemented within (single) OutputThread

October 2016

geant-dev@cern.ch 9

GeantV output implementation

 idea:
 several ROOT TTrees should be filled in parallel by each of the

TransportTracks threads

 Output thread should be ‘only’ in charge of merging TTrees and
writing them to I/O

 implementation:
 derived from ROOT TParallelMergingFile and parallelMergerServer

which are socket-based

 TThreadMergingFile and TThreadMergingServer use a queue
(dcqueue<TBufferFile*>*) as the ‘communication channel’

October 2016

geant-dev@cern.ch 10

GeantV I/O data flow

October 2016

geant-dev@cern.ch 11

Block size

G
e

a
n

tB
lo

c
k
A

rr
a

y

UserHits

generate hits

N Transport Threads

GeantV Output performance

October 2016

geant-dev@cern.ch 12

Intel(R) Xeon(R) CPU E5-2630 v3 @

2.40GHz (Haswell)

2x8 cores, HT=2 (i.e. 16 native threads, 32

in hyperthreading mode)

Disk: SSD ~430 MB/s non-cached write

speed (measured with: dd if=/dev/zero

of=/tmp/testfile bs=1G count=1

oflag=direct)

Hits Output status

 (optional) hits persistency available in GeantV

 further improvements (reordering of hits in file, etc) possible at later

stage

 tested in multithreaded environment with high number of

hits generated

 test hit rate much above typical simulation applications

October 2016

geant-dev@cern.ch 13

GeantV kinematics output (MC truth)

 handling of MC truth is problematic per se

 which particles to store, how to keep connections, where to
connect hits

multithreading adds the complexity

 order of processing of particles is ‘random’

 processing of ‘daughter’ particle may be completed before
‘mother’ particle ‘end of life’

 events need to be ‘put together’ after parallel processing

October 2016

geant-dev@cern.ch 14

MC truth

 we can’t (and we don’t need) to store all particles

 typically no delta-e, no low-E gamma showers, etc needed

 we need to store particles necessary to understand the given
event (process)

 we need to store particles to associate hits

 in all cases, we need to (re)connect particles to have consistent
event trees

October 2016

geant-dev@cern.ch 15

MC truth handling requirements

 no MC truth-handling strategy is perfect, nor complete, but:

 we need to give user a way to decide

 transport need to provide/allow

 links between mother and daughter particles

 the possibility to flag particles as ‘to be stored’

 possibility to introduce ‘rules’ what to store

 a way to ‘reconnect’ tracks and hits if some are skipped

 if we don’t store a particle, we need to update the daughter particles to point back to the
last stored one in the chain

 for the final output we need to have some event record

 for our proof of principle, we can start with HepMC

October 2016

geant-dev@cern.ch 16

MC truth handling architecture

 light coupling to transport

 minimal ‘disturbance’ to transport threads

 maximal flexibility of implementing custom particle history handlers

 interface provided by MCTruthMgr

 receives (concurrent) notifications from transport threads about

 adding (primary or secondary) new particles

 ending particles

 finishing events

 delegates processing of particles history to concrete MC truth implementation

October 2016

geant-dev@cern.ch 17

MC truth infrastructure and users code

 MCTruthMgr provides interface and underlying infrastructure

for particles history

 light-weight transient, intermediate event record

 users code:

 decision making (filtering) algorithm

 conversion to users’ event format

 concrete example implementation provided based on HepMC3

October 2016

geant-dev@cern.ch 18

MC truth call sequence

October 2016

geant-dev@cern.ch 19

add track to event #n

add track to event #m

add track to event #i

new track

new track

new track

add track to event #nnew track

add track to event #mnew track

end track

end track

end track

GeantPropagator MCTruthMgr

stop track

stop track

stop track

close event #n

HepMCTruth

close event #m

writeHepMC event

writeHepMC event

users’ code

MC truth output status

 GeantV MC truth manager provides handles to deal with
particles history

 allows ‘physics’ studies

 first implementation, further iterations possible to look in detail at
performance

 example implementation based on HepMC3 provided

 further performance testing/improvements in highly concurrent
environment to be studied

October 2016

geant-dev@cern.ch 20

Physics Validation Repository

 provide repository for tests results allowing regression
testing

 physics tests for any new version of GeantV compared to the
previous version

 provide repository for experimental data allowing physics
validation

 ‘physics’ tests should have corresponding experimental data in a
central repository

October 2016

geant-dev@cern.ch 21

Geant Physics Validation approach

 collaboration with FNAL

 access via web services

 efficient interface allowing interactive comparison of plots

 interface to production system allowing automatic production and
uploading of results

 extending the functionality to GeantV (in addition to Geant4)

 adding more tests

October 2016

geant-dev@cern.ch 22

Validation Data “flow”

October 2016

geant-dev@cern.ch 23

Geant Validation Portal

October 2016

geant-dev@cern.ch 24

Geant4

GeantV

Experiment

Conclusion

 interface to HepMC3 for particles input available

 users hits persistency possible with memory file merging

 lightweight MC truth interface available allowing to study

particle history according to users’ specific selections

 Geant Validation service provides the functionality needed

for regression testing and physics validation

October 2016

geant-dev@cern.ch 25

Backup slides

October 2016

geant-dev@cern.ch 26

Physics Validation service architecture

October 2016

geant-dev@cern.ch 27

