
Witek Pokorski (CERN) for the GeantV development team

GeantV – I/O, MCTruth and Validation Repository

Outline

 GeantV input

 GeantV output

 hits

 kinematics

 Physics validation repository

 Conclusion

2geant-dev@cern.ch

October 2016

GeantV Input

 Simulation input
 particles to be transported through the detector

 Realistic collision events produced by Monte Carlo event generators
(Pythia8, Herwig++, etc)

 Single particles (like the test beam) to study particular response

 Use of interface (event record) make the generation and the
simulation steps independent
 GeantV does not ‘care’ where the particles are coming from

 Simulation threads concurrently process particles from the input

October 2016

geant-dev@cern.ch 3

HepMC as GeantV input format

October 2016

geant-dev@cern.ch 4

typical time for 13 TeV pp
event ~o(1ms)(negligible
compared to simulation
step)

Particles fed

into concurrent

simulation

threads

GeantV input implementation

 interface implemented in HepMCGenerator class

 depends (of course) on HepMC

 can read HepMC ascii and root files

 automatically recognizes them by extension

 selects stable (outgoing) particles from the event

 applies (if any) Eta, Phi, and momentum cuts

October 2016

geant-dev@cern.ch 5

Status of GeantV Input

 implementation complete and fully functional

 based on HepMC3 event record

 nothing pending for short term development

October 2016

geant-dev@cern.ch 6

GeantV Output

 hits

 kinematics (MCTruth)

October 2016

geant-dev@cern.ch 7

GeantV hits

 Physics simulation produces ‘hits’ i.e. energy depositions

in the sensitive parts of the detector

 Those hits are produced concurrently by all the simulation

(TransportTracks) threads

 Thread-safe queues have been implemented to handle

asynchronous generation of hits by several threads

October 2016

geant-dev@cern.ch 8

GeantV output threads

 (several) TransportTracks threads generate hits
 GeantFactory machinery takes care of grouping the hits in HitBlocks

and putting them in a queue(s)

 two possible approaches
 serialization done within (one) output thread

 discovered a bottleneck

 performing serialization within each transport thread solved the
problem

 ‘writing to disc’ implemented within (single) OutputThread

October 2016

geant-dev@cern.ch 9

GeantV output implementation

 idea:
 several ROOT TTrees should be filled in parallel by each of the

TransportTracks threads

 Output thread should be ‘only’ in charge of merging TTrees and
writing them to I/O

 implementation:
 derived from ROOT TParallelMergingFile and parallelMergerServer

which are socket-based

 TThreadMergingFile and TThreadMergingServer use a queue
(dcqueue<TBufferFile*>*) as the ‘communication channel’

October 2016

geant-dev@cern.ch 10

GeantV I/O data flow

October 2016

geant-dev@cern.ch 11

Block size

G
e

a
n

tB
lo

c
k
A

rr
a

y

UserHits

generate hits

N Transport Threads

GeantV Output performance

October 2016

geant-dev@cern.ch 12

Intel(R) Xeon(R) CPU E5-2630 v3 @

2.40GHz (Haswell)

2x8 cores, HT=2 (i.e. 16 native threads, 32

in hyperthreading mode)

Disk: SSD ~430 MB/s non-cached write

speed (measured with: dd if=/dev/zero

of=/tmp/testfile bs=1G count=1

oflag=direct)

Hits Output status

 (optional) hits persistency available in GeantV

 further improvements (reordering of hits in file, etc) possible at later

stage

 tested in multithreaded environment with high number of

hits generated

 test hit rate much above typical simulation applications

October 2016

geant-dev@cern.ch 13

GeantV kinematics output (MC truth)

 handling of MC truth is problematic per se

 which particles to store, how to keep connections, where to
connect hits

multithreading adds the complexity

 order of processing of particles is ‘random’

 processing of ‘daughter’ particle may be completed before
‘mother’ particle ‘end of life’

 events need to be ‘put together’ after parallel processing

October 2016

geant-dev@cern.ch 14

MC truth

 we can’t (and we don’t need) to store all particles

 typically no delta-e, no low-E gamma showers, etc needed

 we need to store particles necessary to understand the given
event (process)

 we need to store particles to associate hits

 in all cases, we need to (re)connect particles to have consistent
event trees

October 2016

geant-dev@cern.ch 15

MC truth handling requirements

 no MC truth-handling strategy is perfect, nor complete, but:

 we need to give user a way to decide

 transport need to provide/allow

 links between mother and daughter particles

 the possibility to flag particles as ‘to be stored’

 possibility to introduce ‘rules’ what to store

 a way to ‘reconnect’ tracks and hits if some are skipped

 if we don’t store a particle, we need to update the daughter particles to point back to the
last stored one in the chain

 for the final output we need to have some event record

 for our proof of principle, we can start with HepMC

October 2016

geant-dev@cern.ch 16

MC truth handling architecture

 light coupling to transport

 minimal ‘disturbance’ to transport threads

 maximal flexibility of implementing custom particle history handlers

 interface provided by MCTruthMgr

 receives (concurrent) notifications from transport threads about

 adding (primary or secondary) new particles

 ending particles

 finishing events

 delegates processing of particles history to concrete MC truth implementation

October 2016

geant-dev@cern.ch 17

MC truth infrastructure and users code

 MCTruthMgr provides interface and underlying infrastructure

for particles history

 light-weight transient, intermediate event record

 users code:

 decision making (filtering) algorithm

 conversion to users’ event format

 concrete example implementation provided based on HepMC3

October 2016

geant-dev@cern.ch 18

MC truth call sequence

October 2016

geant-dev@cern.ch 19

add track to event #n

add track to event #m

add track to event #i

new track

new track

new track

add track to event #nnew track

add track to event #mnew track

end track

end track

end track

GeantPropagator MCTruthMgr

stop track

stop track

stop track

close event #n

HepMCTruth

close event #m

writeHepMC event

writeHepMC event

users’ code

MC truth output status

 GeantV MC truth manager provides handles to deal with
particles history

 allows ‘physics’ studies

 first implementation, further iterations possible to look in detail at
performance

 example implementation based on HepMC3 provided

 further performance testing/improvements in highly concurrent
environment to be studied

October 2016

geant-dev@cern.ch 20

Physics Validation Repository

 provide repository for tests results allowing regression
testing

 physics tests for any new version of GeantV compared to the
previous version

 provide repository for experimental data allowing physics
validation

 ‘physics’ tests should have corresponding experimental data in a
central repository

October 2016

geant-dev@cern.ch 21

Geant Physics Validation approach

 collaboration with FNAL

 access via web services

 efficient interface allowing interactive comparison of plots

 interface to production system allowing automatic production and
uploading of results

 extending the functionality to GeantV (in addition to Geant4)

 adding more tests

October 2016

geant-dev@cern.ch 22

Validation Data “flow”

October 2016

geant-dev@cern.ch 23

Geant Validation Portal

October 2016

geant-dev@cern.ch 24

Geant4

GeantV

Experiment

Conclusion

 interface to HepMC3 for particles input available

 users hits persistency possible with memory file merging

 lightweight MC truth interface available allowing to study

particle history according to users’ specific selections

 Geant Validation service provides the functionality needed

for regression testing and physics validation

October 2016

geant-dev@cern.ch 25

Backup slides

October 2016

geant-dev@cern.ch 26

Physics Validation service architecture

October 2016

geant-dev@cern.ch 27

