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Magnet and cable specifications

3

MCBXFB Technical specifications

Magnet configuration
Combined dipole

(Operation in X-Y square)

Integrated field 2.5 Tm

Minimum free aperture 150 mm

Nominal current < 2500 A

Radiation resistance  40 MGy

Physical length < 1.505 m

Working temperature 1.9 K

Iron geometry MQXF iron holes

Field quality < 10 units (1E-4) 

Fringe field < 40 mT (Out of the Cryostat)

Radiation resistance 

requires mechanical 

clamping 

Working point < 65%
Cable Parameters

No. of strands 18

Strand diameter 0.48 mm 

Cable thickness 0.845 mm

Cable width 4.37 mm

Key-stone angle 0.67º

Cu:Sc 1.75
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Magnetic calculations
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Magnetic Design: Final design

* Higher field 

necessary to 

compensate the 

longer coil end at the 

outer dipole.

Inner Dipole (ID) & 

Outer Dipole (OD) parameters
Units ID OD

Nominal field T 2.11 2.23*

Nominal Field (Combined) T 3.07

Nominal current A 1600 1470

Coil peak field (Combined) T 4.13 (ID)

Working point (combined) % 50.1

Inductance/m mH/m 46.77 99.1

Stored energy/m KJ/m 59.87 107

Aperture mm 156 230

Iron yoke Inner Diam. mm 316

Iron yoke Outer Diam. mm 614

Torque Nm/m 1.2×105

Max fringe field, 20 mm out of the cryostat mT 29

Total number of turns - 139 187

Cable length needed for each pole/coil m 362 485

Whole iron option is 

chosen:

• It meets fringe field 

requirement.

• It has smaller 

Lorentz forces.

Difficult winding:  1 m thinner cable yields 

∆b3 ≅ - 5 units

∆a3 ≅ + 0.8 units
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Coil ends were shortened to increase the coil 

length supported by collars:

260 mm

210 mm

213 mm

165 mm

Torsion estimations due to torque at coil ends

Magnetic Design Summary: Coil ends

ID OD

58 different spacers 

per magnet!

2015

2016
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3-D magnetic re-design

Magnetic re-design was

carried out taking into

account:
 Real cable and insulation

measurements.

 Ground and interlayer

insulation.

 MCBXFA is more relevant for 

the accelerator expected 

operation, so it is decided to 

centre its sextupole variation.
◦ Different shimming schemes were

planned for each one of the

magnets.

◦ All powering scenarios were studied

for both magnets.

◦ Choosing the best shimming

scenario for both of them.

 Some high order multipoles

were reduced. However b11 

and a7 remains to be high.
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Magnetic Design: Same iron for A & B

 The cooling pipes are aligned with the field when both dipoles are powered

simultaneously.

 The impact on b3 variation with current is important: from 6 units to 36.

 It is accepted by beam dynamics calculations.

Integrated multipoles with iron holes at coordinate axes

Integrated multipoles with iron holes aligned with maximum field



Magnetic Design Summary: Spacers

• Step files have been generated with CERN support (Susana Izquierdo

Bermúdez & Benoit Lepoittevin).

• Ruled surfaces have been shifted by 0.23 mm to allow space for 

electrical insulation (glassfiber sheet).

• Edges have been rounded with 0.2 mm fillet radii.

• These drawings and 3-D models will be used for the cost estimate for the 

series.
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Return end spacers at the outer layer, outer dipole

Lead end spacers at the outer layer, outer dipole
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Mechanical calculations
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Rivets
Handling 

supports

Outer Keys

Press 

supports

Torque 

locking

Torque 

locking

Inner 

keys

Titanium tube…

for inward radial 

displacements

Inner collar outer diameter = 230 mm (Thickness = 27 mm)

Outer collar outer diameter = 316 mm (Thickness = 33 mm)
1

2

Interference

… for azimuthal 

deformations

3

4

…for radial 

deformations



Mechanical design: 

Evolution
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Detailed coil model:

• Azimuthal and radial collaring shoes.

• Interlayer insulation

• Ground insulation

• Quench heaters

Difficulties to achieve 

convergence:

• No symmetry can be applied 

(longer times and difficult 

support definition).

• Many elements with 

different materials in 

contact.

• Take care of excessive 

penetration in contacts

• Difficult to mesh thin 

elements properly.



Mechanical design: 

Simulation of collaring
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Achieved goals:

• Monitoring stress at the coils when the 

pins/keys are inserted.

• Sizing of the stoppers needed to limit the 

press displacement.

• Checking that all clearances are the correct 

ones in order to assure assembly.



Mechanical design: 

Simulation of collaring
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Necessary play to 

introduce pins/keys 

(0.1 mm) is obtained 

for both sets of 

collars without 

stressing the coils 

excessively

Inner Dipole

Outer Dipole

Approximately

340 Tm/m

Approximately

240 Tm/m

All assembly and 

operation scenarios 

have been simulated



Mechanical design:

Results
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In this detailed model we 

obtained good results but…

• Coils seem less stiff than in 

the previous model.

• The applied interference is not 

enough to keep the coils 

attached to the collars

We tend to trust more on 

the previous model as it is 

much simpler. 

• MEASUREMENT OF THE 

ELASTIC MODEL OF THE TEN-

CABLE STACK

• SHORT MECHANICAL MODEL



Measurement of the E-modulus of 

impregnated ten-cable stacks

16

 First results 

showed half the 

expected rigidity.

 The tooling has 

been refurbished 

including ball cages 

to guarantee a 

parallel 

displacement of 

both halves. 
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• We have no stainless steel around the iron yoke.

• Eight rods will take care of packing the iron yoke and holding the 

longitudinal Lorentz forces.

• We have started with an analytical model (simplified, one dimensional, 

no collars included): about 30 MPa of longitudinal pre-stress on coil 

ends would be enough not to lose contact at cold.

• Cross-check with a 3-D Ansys model is ongoing: collars are included 

(with friction as an option).

Yoke

End plate

Collars

Inner dipole coil

Outer dipole coil
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• Results from Ansys model are under evaluation:

• Uncertainty about mechanical properties of coil (Young modulus in 

longitudinal direction?).

• Stress concentration at the collar nose edge and at the joint of central post and 

cables. Are they real?

• Is there risk of buckling at the coil end under the initial pre-stress?
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Quench protection



First approach: protection with dump resistors
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First simulation using 

our in-house developed 

code  showed good 

results:

A dump resistor was 

enough to protect the 

magnet



Protection: quench heaters evaluation

21

• Dump resistors are 

not the preferred 

option given the high 

cost of the switch.

• Quench heaters need 

to be considered.

• Our in-house code is 

improved to take into 

account spacers, layer 

jumps and quench 

heaters

• Quench heaters delay 

is obtained by means 

of a thermal 

simulation in Ansys

(around 14  ms)



Protection with crowbar: simulation results
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Long Magnet, Outer Dipole, Stand-alone powering (Crowbar resistance)
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Protection with quench heaters: simulation
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Long Magnet, Outer Dipole, Stand-alone powering (Quench Heater)

• Hotspot temperature is too 

high for the long magnet using 

the external resistance in the 

crowbar.

• Heaters will be included in the 

ongoing short prototype to 

validate the quench simulation 

and the assembly procedure 

of heaters.

• Design of heaters is ongoing 

in collaboration with CERN.
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Fabrication



Manufacturing concept
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 Double pancake coils of small Rutherford NbTi cable with large aperture: 

large number of turns.

 Traditional coils made with polyimide insulated cables would be too

spongy: dimension control would be very challenging.

 Fully impregnated coils would ease the dimension accuracy.

 Resin should be radiation hard.

 Cable are insulated with braided S-2 glass fiber to ease impregnation.

 A binder is necessary to hold the first layer while winding the second one.

 The binder must be compatible with the resin.

 Coil pre-stress will be provided by self-supported stainless steel collars.

 Iron yoke will be laminated and will not provide additional mechanical

support.



Binder validation test

 Impregnation resin compatibility:

 A mould for vacuum impregnation of ten-cable 

stack samples was fabricated.

 Results seem to be good, no bubbles at first sight. 

No cracks with thermal cycling. 

 Nomex 411 is compatible with the resin.

 Two different release agent have been checked: 

Araldit QZ13 and Loctite Frekote 770 NC.

 Ongoing tests with a different thermal cycle.
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Short mechanical model: concept
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• Essential to validate the 

assembly process and the 

mechanical simulations.

• A 120 Tm press available at 

CIEMAT workshop will be used 

to this end.

• A 150-mm long set of collars will 

be closed. Aluminium dummy 

coils will be used for first tests.



Short mechanical model: design
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Inner collar tooling

Outer collars tooling



Ongoing Mock-ups and Tests: 

Short mechanical model
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Three collars 

instrumented with 

strain gauges

Auxiliary tooling 

in development/

production

CERN, Prevessin B927 - Jesús A. García Matos - 13th July 2016



Short mechanical model: fabrication
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First tests: press calibration

 All the parts are under fabrication.

 Some are already finished: main cage, 

tooling to pack collars, ancillary tools.

 Collar tips are deformed after EDM cut

because of internal stresses:
 A heat treatment at low temperature has 

been performed.

 They are stacked taken into account the

deformation.

Female collar, inner dipole



Winding machine
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 Coils (winding and impregnation) 

will be done at CIEMAT facilities.

 Winding machine borrowed from 

CERN, some modifications 

pending:
◦ Brake

◦ Support beam and mandrel.

◦ New actuator for the craddle movement.

◦ Flag crane to hold the spool containing 

the second layer above the winding 

machine.

 Lead time of a commercial brake 

was too long and expensive. In-

house development is ongoing.



Next steps 
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 Short mechanical model test: November/December

 Winding machine brake: November/December

 First winding test: December/January



Conclusions

 Magnetic and mechanical design are close to be finished: only 

longitudinal mechanical model is ongoing.

 Manufacturing concepts are being validated through several mock-

ups and tests.

 The short mechanical model is crucial to check if the assembly 

design is feasible and the mechanical simulations are trustable.

 We are working on the winding tools, to allow the first winding test 

in January.

33



Back-up slides

34



35

Rivets
Handling 

supports

Outer Keys

Press 

supports

Torque 

locking

Torque 

locking

Inner 

keys

Titanium 

tube

Inner collar outer diameter = 230 mm (Thickness = 27 mm)

Outer collar outer diameter = 316 mm (Thickness = 33 mm)
1

2

Interference3

4



Assembly gaps evolution
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A

B

C

D

E

F

G

HI

J

Inner collars play = 0,12 mm

Outer collars play = 0,1 mm

All values in mm

Gap
Original

gap

ID

Press

ID Spring 

Back

Before

OD Press

OD

Press

OD Spring

back

Cool-

down

108%

Power.

A 0,2 - - opens 0,13 opens opens 0,08

B 0,1 - - opens 0,08 0,08 0,085 contact

C 0,5 - - opens 0,47 opens opens 0,4

D 0,55 0,42 opens opens opens opens opens opens

E 0,3 0,18 opens opens opens opens opens opens

F 0,03 ≅0,03 contact contact contact contact contact contact

G 0,7 - - opens 0,55 opens opens opens

H 0,6 - - opens 0,45 opens opens opens

I 0,03 - - contact contact contact contact contact

J 0,5 - - 0,43 0,47 0,46 0,465 opens


