

HL-LHC Collaboration Meeting 2016: MCBXFB Short Orbit Corrector Prototype

P. Abramian, J. Calero, J. A. García Matos, J.L. Gutierrez,

D. Lopez, F. Toral (CIEMAT)

J. C. Pérez (CERN)

Index

- Specifications reminder.
- Magnetic calculations.
- Mechanical calculations.
- Quench protection.
- Fabrication.
- Conclusions.

Magnet and cable specifications

< 40 mT (Out of the Cryostat)

MCBXFB Technical specifications Combined dipole **Magnet configuration** (Operation in X-Y square) 2.5 Tm Integrated field Minimum free aperture 150 mm Nominal current < 2500 A 40 MGy Radiation resistance Physical length < 1.505 m Working temperature 1.9 K MQXF iron holes Iron geometry Field quality < 10 units (1E-4)

Radiation resistance requires mechanical clamping

Working point < 65%

Cable Parameters						
No. of strands	18					
Strand diameter	0.48 mm					
Cable thickness	0.845 mm					
Cable width	4.37 mm					
Key-stone angle	0.67°					
Cu:Sc	1.75					

Fringe field

Magnetic calculations

Magnetic Design: Final design

Inner Dipole (ID) & Outer Dipole (OD) parameters	Units	ID	OD		
Nominal field	Т	2.11	2.23*		
Nominal Field (Combined)	Т	3.07			
Nominal current	А	1600 1470			
Coil peak field (Combined)	Т	4.13 (ID)			
Working point (combined)	%	50.1			
Inductance/m	mH/m	46.77	99.1		
Stored energy/m	KJ/m	59.87	107		
Aperture	mm	156	230		
Iron yoke Inner Diam.	mm	316			
Iron yoke Outer Diam.	mm	614			
Torque	Nm/m	1.2×10 ⁵			
Max fringe field, 20 mm out of the cryostat	mT	29			
Total number of turns	-	139	187		
Cable length needed for each pole/coil	m	362	485		

Whole iron option is chosen:

- It meets fringe field requirement.
- It has smaller Lorentz forces.

* Higher field necessary to compensate the longer coil end at the outer dipole.

Difficult winding: $1 \mu m$ thinner cable yields

 Δ b3 \cong - 5 units

 \triangle a3 \cong + 0.8 units

Magnetic Design Summary: Coil ends

Torsion estimations due to torque at coil ends

Coil ends were shortened to increase the coil length supported by collars:

58 different spacers per magnet!

3-D magnetic re-design

Magnetic re-design was carried out taking into account:

- Real cable and insulation measurements.
- Ground and interlayer insulation.
- MCBXFA is more relevant for the accelerator expected operation, so it is decided to centre its sextupole variation.
 - Different shimming schemes were planned for each one of the magnets.
 - All powering scenarios were studied for both magnets.
 - Choosing the best shimming scenario for both of them.
- Some high order multipoles were reduced. However b11 and a7 remains to be high.

Magnetic Design: Same iron for A & B

- The cooling pipes are aligned with the field when both dipoles are powered simultaneously.
- The impact on b3 variation with current is important: from 6 units to 36.
- It is accepted by beam dynamics calculations.

Ciemat Centro de Investi

Magnetic Design Summary: Spacers

- Step files have been generated with CERN support (Susana Izquierdo Bermúdez & Benoit Lepoittevin).
- Ruled surfaces have been shifted by 0.23 mm to allow space for electrical insulation (glassfiber sheet).
- Edges have been rounded with 0.2 mm fillet radii.
- These drawings and 3-D models will be used for the cost estimate for the series.

Lead end spacers at the outer layer, outer dipole

Mechanical calculations

Self-supporting collars

Inner collar outer diameter = 230 mm (Thickness = 27 mm)
Outer collar outer diameter = 316 mm (Thickness = 33 mm)

Mechanical design: Evolution

Detailed coil model:

- Azimuthal and radial collaring shoes.
- Interlayer insulation
- Ground insulation
- Quench heaters

- No symmetry can be applied (longer times and difficult support definition).
- Many elements with different materials in contact.
- Take care of excessive penetration in contacts
- Difficult to mesh thin elements properly.

Mechanical design: Simulation of collaring

Achieved goals:

- Monitoring stress at the coils when the pins/keys are inserted.
- Sizing of the stoppers needed to limit the press displacement.
- Checking that all clearances are the correct ones in order to assure assembly.

Mechanical design: Simulation of collaring

Necessary play to introduce pins/keys (0.1 mm) is obtained for both sets of collars without stressing the coils

Inner Dipole

Outer Dipole

All assembly and operation scenarios have been simulated

-125.5 -131.76

-138.02

-144.28 Min

Approximately

240 Tm/m

Mechanical design: Results

In this detailed model we obtained good results but...

- Coils seem less stiff than in the previous model.
- The applied interference is not enough to keep the coils attached to the collars

We tend to trust more on the previous model as it is much simpler.

- MEASUREMENT OF THE ELASTIC MODEL OF THE TEN-CABLE STACK
- SHORT MECHANICAL MODEL

Measurement of the E-modulus of impregnated ten-cable stacks

Mechanical Design: Longitudinal forces

- We have no stainless steel around the iron yoke.
- Eight rods will take care of packing the iron yoke and holding the longitudinal Lorentz forces.
- We have started with an analytical model (simplified, one dimensional, no collars included): about 30 MPa of longitudinal pre-stress on coil ends would be enough not to lose contact at cold.
- Cross-check with a 3-D Ansys model is ongoing: collars are included (with friction as an option).

Mechanical Design: Longitudinal forces

- Results from Ansys model are under evaluation:
 - Uncertainty about mechanical properties of coil (Young modulus in longitudinal direction?).
 - Stress concentration at the collar nose edge and at the joint of central post and cables. Are they real?
 - Is there risk of buckling at the coil end under the initial pre-stress?

Quench protection

First approach: protection with dump resistors

First simulation using our in-house developed code showed good results:

A dump resistor was enough to protect the magnet

No quench heaters were necessary

Protection: quench heaters evaluation

 Dump resistors are not the preferred option given the high cost of the switch.

 Quench heaters need to be considered. Our in-house code is improved to take into account spacers, layer jumps and quench heaters

Quench heaters delay is obtained by means of a thermal simulation in Ansys (around 14 ms)

Protection with crowbar: simulation results

Long Magnet, Outer Dipole, Stand-alone powering (Crowbar resistance)

Protection with quench heaters: simulation

Long Magnet, Outer Dipole, Stand-alone powering (Quench Heater)

Fabrication

Manufacturing concept

- Double pancake coils of small Rutherford NbTi cable with large aperture: large number of turns.
- Traditional coils made with polyimide insulated cables would be too spongy: dimension control would be very challenging.
- Fully impregnated coils would ease the dimension accuracy.
- Resin should be radiation hard.
- Cable are insulated with braided S-2 glass fiber to ease impregnation.
- A binder is necessary to hold the first layer while winding the second one.
- The binder must be compatible with the resin.
- Coil pre-stress will be provided by self-supported stainless steel collars.
- Iron yoke will be laminated and will not provide additional mechanical support.

Binder validation test

- Impregnation resin compatibility:
 - A mould for vacuum impregnation of ten-cable stack samples was fabricated.
 - Results seem to be good, no bubbles at first sight.
 No cracks with thermal cycling.
 - Nomex 411 is compatible with the resin.
 - Two different release agent have been checked: Araldit QZ13 and Loctite Frekote 770 NC.
 - Ongoing tests with a different thermal cycle.

Short mechanical model: concept

Short mechanical model: design

Inner collar tooling

Ongoing Mock-ups and Tests: Short mechanical model

Short mechanical model: fabrication

- All the parts are under fabrication.
- Some are already finished: main cage, tooling to pack collars, ancillary tools.
- Collar tips are deformed after EDM cut because of internal stresses:
 - A heat treatment at low temperature has been performed.
 - They are stacked taken into account the deformation.

Female collar, inner dipole

First tests: press calibration

Winding machine

- Coils (winding and impregnation)
 will be done at CIEMAT facilities.
- Winding machine borrowed from CERN, some modifications pending:
 - Brake
 - Support beam and mandrel.
 - New actuator for the craddle movement.
 - Flag crane to hold the spool containing the second layer above the winding machine.
- Lead time of a commercial brake was too long and expensive. Inhouse development is ongoing.

Next steps

- Short mechanical model test: November/December
- Winding machine brake: November/December
- First winding test: December/January

Conclusions

- Magnetic and mechanical design are close to be finished: only longitudinal mechanical model is ongoing.
- Manufacturing concepts are being validated through several mockups and tests.
- The short mechanical model is crucial to check if the assembly design is feasible and the mechanical simulations are trustable.
- We are working on the winding tools, to allow the first winding test in January.

Back-up slides

Self-supporting collars

Inner collar outer diameter = 230 mm (Thickness = 27 mm) Outer collar outer diameter = 316 mm (Thickness = 33 mm)

Assembly gaps evolution

Inner collars play = 0,12 mm Outer collars play = 0,1 mm

All values in mm

	Gap	Original gap	ID Press	ID Spring Back	Before OD Press	OD Press	OD Spring back	Cool- down	108% Power.
_/	Α	0,2	-	-	opens	0,13	opens	opens	0,08
(В	0,1	-	-	opens	0,08	0,08	0,085	contact
	С	0,5	-	-	opens	0,47	opens	opens	0,4
	D	0,55	0,42	opens	opens	opens	opens	opens	opens
	Е	0,3	0,18	opens	opens	opens	opens	opens	opens
	F	0,03	≅0,03	contact	contact	contact	contact	contact	contact
	G	0,7	-	-	opens	0,55	opens	opens	opens
	Н	0,6	-	-	opens	0,45	opens	opens	opens
	- 1	0,03	-	-	contact	contact	contact	contact	contact
Ciemal Energy y Tecn	J	0,5	-	-	0,43	0,47	0,46	0,465	opens

В

F

D

C