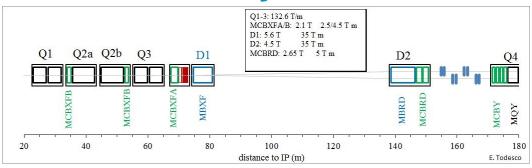


WP3 Satellite meeting Status of MQYY

Helene Felice for the MQYY team

CEA: D. Simon, M. Segreti, J.M. Rifflet, A. Madur, S. Somsom, R. Machado-Correia, J.J Goc, J.M. Gheller, D. Bouziat, A. Acker, P. Graffin, H. Neyrial


CERN: E. Todesco, A Foussat, J.C. Perez, L. Fiscarelli, O. Dunkel, P. Viret

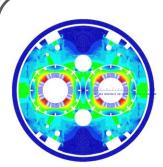
QUACO team: M. Lossasso, I. Bejar-Alonso, F. Toral, T. Martinez, P. Krawczyk, R. Nietubic

17th November 2016 - CERN

History of MQYY development

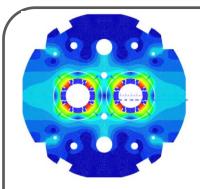
Q4 is the LHC MQY, double aperture quadrupole with 70 mm aperture

Layout of the magnets close to the interaction point


Initial HL-LHC baseline was to use MQYY, a new double aperture quadrupole with 90 mm aperture (see talk from E. Todesco)

- <u>2011</u>: development starts with a CEA- CERN initiative (J.M. Rifflet et M. Segreti) within the High Lumi design study (FR contribution)
- March 2014: collaboration agreement between CERN and CEA including activities on MQYY (WP2 of the agreement)
- September 2015: Formal decision to change the cable

Zoom on cable change in 2015


From 2011 to 2015

- Design study (2011-2013)
- single layer coil
- LHC MB outer layer cable (15 mm wide)

Reasons

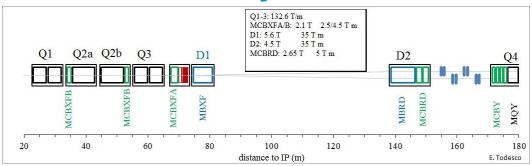
- Use available cable
- CEA considerable experience with this cable for the MQ

Aperture	90 mm
Nominal Gradient	115 T/m
Magnetic length at 1,9 K	3,8 m
1st design Nominal Current	15650 A
Peak Field	6,1 T
Margin on the loadline	20 %
Differential inducance	2 x 2,9 mH
Cable type	MQ (MB outer layer)

September 2015:

- Two layer coil
- LHC MQM cable (8.8 mm wide)

Reasons


- Reduce operational current
- Saving on power converters and links

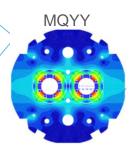
Aperture	90 mm
Nominal Gradient	120 T/m
Magnetic length at 1,9 K	3,7 m
MQYY Nominal Current	4590 A
Peak field	6,4 T
Margin on the loadline	23 %
Differential inductance	2 x 37,5 mH
Cable type	MQM

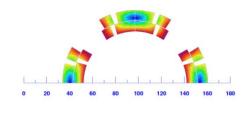
History of MQYY development

Q4 is the LHC MQY, double aperture quadrupole with 70 mm aperture

Layout of the magnets close to the interaction point

Initial HL-LHC baseline was to use MQYY, a new double aperture quadrupole with 90 mm aperture (see talk from E. Todesco)

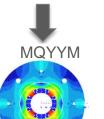

- <u>2011</u>: development starts with a CEA- CERN initiative (J.M. Rifflet et M. Segreti)
- March 2014: collaboration agreement between CERN and CEA including activities on MQYY (WP2 of the agreement)
- September 2015: Formal decision to change the cable
- June 2016:
 - Decision to keep MQY to reduce cost
 - Decision to continue with the development of MQYY short model and prototype
 - Updated CEA-CERN collaboration content: Single aperture model MQYYM developed by CEA and CERN
- Parallel development: two prototypes developed in the QUACO initiative

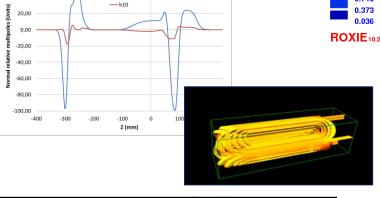


Status on magnetic optimization

Magnetic reoptimization 2D of the double aperture with MQM cable

40.00

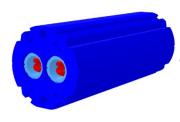


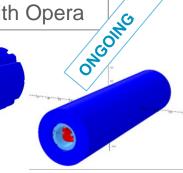

Lead end

Magnet Design

 Fine tuning of the magnetic design (2D + 3D) in ROXIE

• Implementation of the cross-section in the single aperture model




05/2016

11/2016

09/2015

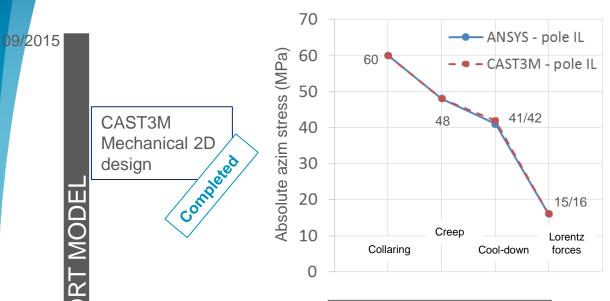
Comparison with Opera

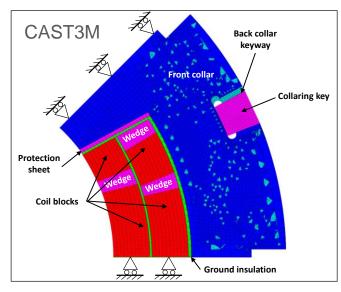
Aperture	90 mm
Nominal Gradient	120 T/m
MQYY Magn. length at 1,9 K (MQYYM)	3,7 m (1,2 m)
MQYY Nominal Current (MQYYM)	4590 A (4550)
Peak field	6,4 T
Margin on the loadline	23 %
Differential inductance	2 x 37,5 mH
Cable type	MQM
MQYYM / MQYY outer diameter	360 / 614 mm

5.766

3.743

3.406 3.069 2.732

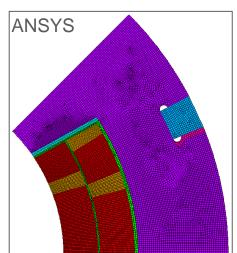

2.058


1.721

1.047

0.710

Status on mechanical design

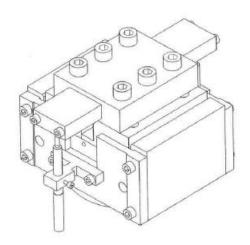


O5/2016

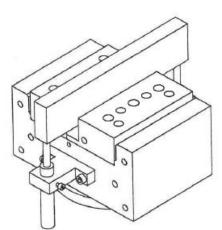
ANSYS/CAST3M comparison

Onsoins

Onsoins



- Self standing collar structure
- Required stress during assembly: 60 MPa
- Very good agreement between CAST3M and ANSYS
- Validation of cable material properties is ongoing



Mechanical measurements of MQM cable for the short model

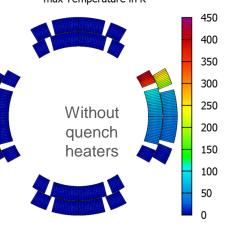
Curing mould, courtesy of M. Durante

Compression tooling, courtesy of M. Durante

- Mechanical data on MQM cable are not available
- Plan to proceed with Young modulus measurements at CEA
- Adaptation of existing tooling is ongoing
- Measurements are foreseen early 2017

Status on quench protection

09/2015 Magnetic reoptimization 2D QH "bas champ" HF Mechanical 2D design Magnet Design Orcompleted by Andro Fine tuning of the magnetic HF design (2D + 3D) in ROXIE Opera Modeling Quench protection study 05/2016 Protection ensured via quench heaters Energy extraction option discarded Heater design ongoing First power supply: 1H; 2H; 5H; 6H Second power supply: 1L; 3L; 5L; 7L 10/2016 Third power supply: 3H; 4H; 7H; 8H Fourth power supply: 2L; 4L; 6L; 8L



Status on quench protection

ROXIE RESULTS		
With protection heaters		
Hot Spot	≈130K	
Voltage to ground	≈135V	

- Protection ensured via quench heaters
- Energy extraction option discarded
- Heater design ongoing

ROXIE RESULTS		
Without PH		
Hot Spot	≈450K	
Voltage to ground	≈700V	
With half of the PH		
Hot Spot	≈160K	
Voltage to ground	≈145V	

10/2016

Status of winding tests

09/2015

HORT MODE

RFT

05/2016

10/2016

CERN

Tooling Design and Fabrication

Coil fab tooling design ready for

Agreement on assembly location

and tooling design strategy

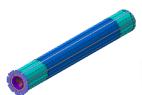
Mock-ups fabrication

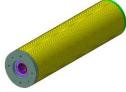
2 mock-ups fabricated:

- Mock-up # 1: ABSPlus 3 printed layer 1 parts (fab at CEA)
 - Winding only ar CEA
- Mock-up # 2: Blue-stone epoxy layer 1 and 2 (fab at CERN)
 - Winding L1 and L2 and curing L1 at CEA
- \Rightarrow Layer jump chosen with R_{bend} = 300 mm

Tooling design, Assembly plan and Procurement

Assembly Tooling Design

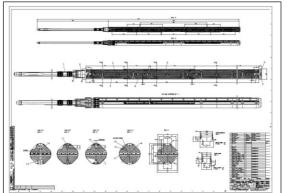



- If >5 k€ procurement through CERN
 - Nordine Azizi / Arnaud Foussat (CERN)
 - Hubert Neyrial / Helene Felice (CEA)
- Coil fabrication tooling: order placed
- End spacers: first 2 sets: order placed
- Angular wedges: order placed
- Collars: Tender in preparation
 - Material:
 Nippon YUS130 in stock
 (X8CrMnNiN 19-11-6 grade)

Remaining component design

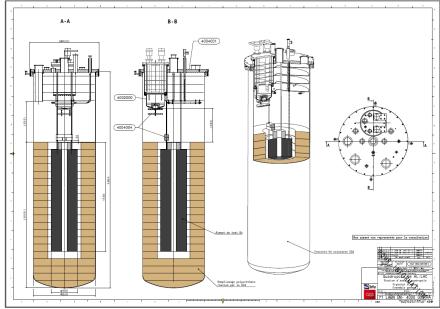
- Connection box
- Protection heater
- Ground plane insulation
- Instrumentation
- Complete integration

- ⇒ Collaring at CERN by a CEA team assisted by CERN
- ⇒ Yoking at CERN by a CEA team assisted by CERN
- ⇒ Interface tooling and assembly tooling
 - ⇒ has been designed based on existing models and drawings provided by CERN.
 - ⇒ will be ordered



Test of MQYYM

09/2015


05/2016

September 2011

• Test of MQYYM in the vertical cryostat at CEA-Saclay

- 8 m cryostat equipped with a 3 m long « sock » (tank)
- Adaptation of an existing top plate
- Saturated LHe bath at 1,9 K 23 mbar
- Magnetic measurements
 - ⇒ Cold system provided by CERN
 - Adaptation on CEA test station under development

ONEOINE TO DE Completed by Start of Test preparation

10/2016

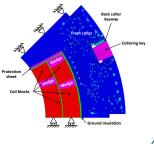
Towards the prototype: QUACO

- In 2015 a program to build two prototypes in the industry using EU funds has been launched (M. Losasso, I. Bejar Alonso)
 - QUACO is a PreCommercial Procurement (PCP)

Principle:

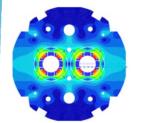
- R&D project in industry lead by a consortium of EU labs: CEA, CIEMAT, NCBJ and CERN
- Industries are in competition in 3 phases. At each end of phase, a company is eliminated.
- In Spring 2020 two companies will have produced two prototypes (one per company)
- The magnetic design and protection are given, mechanical structure and tooling have to be proposed by the company

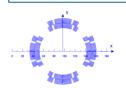




Short Model and Prototypes 2 different paths

11/2016





PHASE 2
13 months
07/2017 to 08/2018

03/2018

Manufacturing
PHASE 3
18 months
11/2018 to 05/2020

- Baseline magnetic design provided but not imposed
- ROXIE provided without the BEM FEM module
- Mechanical support structure design up to companies

Main Technical Difficulties

- The prototype might / will be different from the short model
 - Not a build-to-print
 - Minimum amount of info fed into the prototype to ensure « compatibility to PCP spirit »
- The information we need to provide to the companies is not always mature/ ready
 - cable mechanical measurement for instance
- Concerns on tooling procurement:
 - Shortness of the last phase (18 months) to procure all the tooling (including infrastructure) and complete the prototype
- => Potential increase of technical risk for the project

Status of QUACO

 Start of QUACO in March 2016 with the preparation of the functional specification and the Request for Tender documents

- Request for Tender launched on 31/05/2016
- 4 selected offers approved by Quaco Steering Committee on 28/09/2013
 - All offers within the budget estimated envelope

Status of QUACO

- The four contracts have been signed by the companies for Phase 1:
 - Antec-Tecnalia consortium, Spain
 - Elytt, Spain
 - Sigmaphi, Spain
 - Tesla, UK
- Kick-off meetings: 3rd and 4th of November 2016
- Face-to-face meetings are scheduled to visit the company workshops in the next three weeks

Next steps and Milestones

Short Model MQYYM

- Fabrication of 1st coil at CEA: early 2017
- Aperture collaring and yoking at CERN: late spring 2017
- Test at CEA: Fall 2017

Prototype MQYY

- End of Phase 1: March 2017
- Selection of three companies to proceed to the engineering phase (phase II): June 2017

