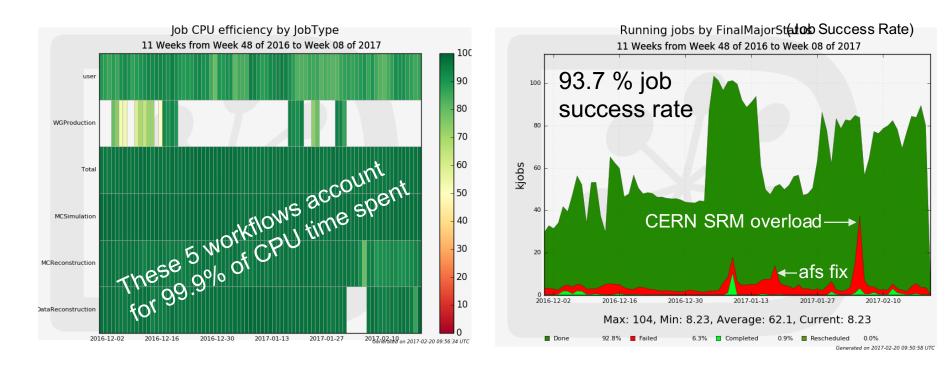
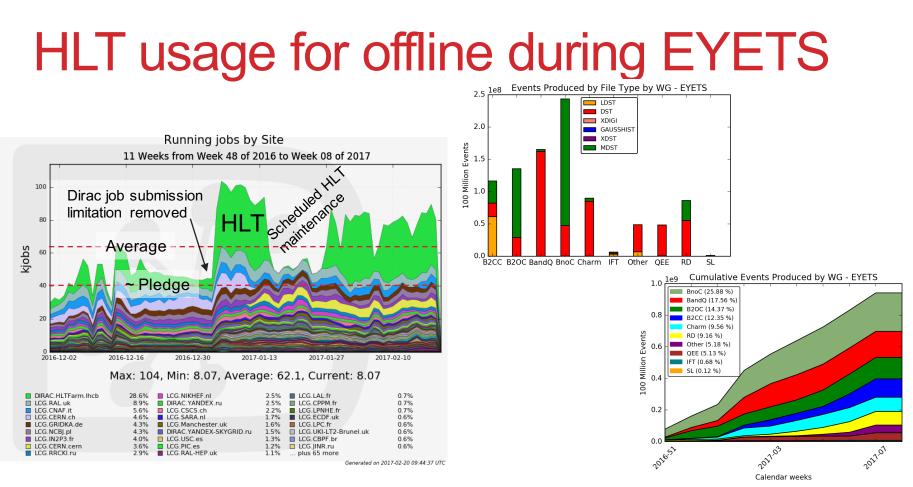

LHCb Computing

Stefan Roiser LHCC WLCG Referees 21 Feb '17



Operations – Resource Usage


- HLT farm contributing 28 % to CPU resources, when used ~ doubles CPU
- Computing resources dominated by simulation productions (86 %)
 - Run 2 stripping campaigns currently in preparation and to start soon
- First time ever LHCb ran more than 100k jobs in parallel !!!

Operations – Job metrics

- Continued running at very high CPU/wall time efficiency
- Job success rate at 93 % slightly lower than usual

- Main reasons: Heavy ion reconstruction running out of time → run on VMs@CERN
- + ~ 3% user jobs, fix CVMFS libraries with afs dependencies, SRM overload

EYETS program for MC production progressing very well

- ~ 950 Mio events produced since Xmas (to compare with 2.5 Billion events / year)
- New tool available to monitor simulation resources by physics working group
 - Plots on work, disk usage, events produced, event types, production types

2017 pledges & 2018 requests

- Change of strategy for data stripping campaigns
 - Skip "incremental stripping" campaigns
 - 2015 data re-stripping during '16/'17 EYETS becomes incremental stripping
 - 2016 re-stripping of '16/'17 EYETS replaces '16 synchronous stripping on disk
- Many thanks to funding agencies for additional efforts with 2017 pledges !!!!
 - Still short on pledged disk but ...

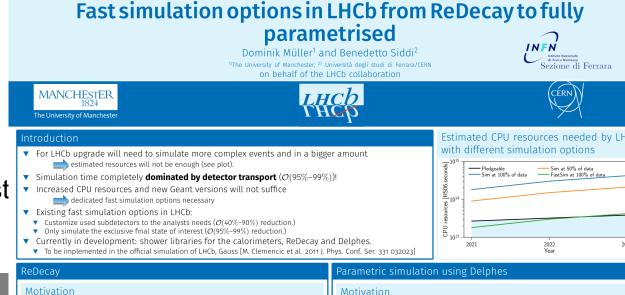
21 Feb '17

 change of strategy for stripping campaigns will allow to accommodate the shortage of pledged disk space

- 2017 resources re-submitted to CRSG with 20 % increase mainly for disk
- 2018/19 resources inline with constant budget increase of resource requests for cpu/disk/tape on top of 2017

20 Sep'16

- 2018 requests assumed with "flat budget increase"
 - CERN provisionally announced no resource increase in 2018


LHCC Refere

Run 2 Optimizations – Software

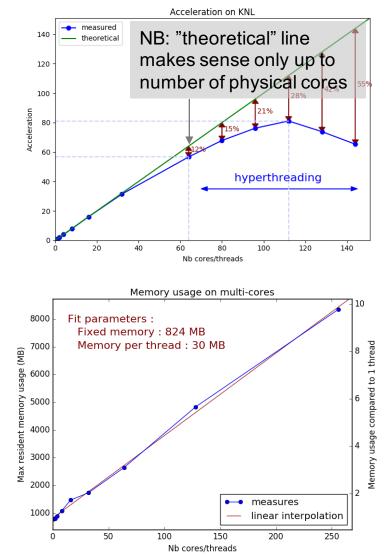
- Application improvements via backports of Run3 upgrade:
 - RICH reconstruction improvements by 20-30 %
 - Re-write of tracking Kalman filter fit improves by factor 2
- Software stack built with SSE 4.2
 - Upgrade concentrates on vectorization \rightarrow more backports possible
 - ~ 4% of grid WNs older than 8 years \rightarrow adapt grid submission
- Fast simulation

21 Feb '17

- LHCC Poster \rightarrow
- Customized use of sub-detectors
- Only simulate excl. final state of interest

Motivation

Run 2 Optimizations – Infrastructure & Computing Model


- 1/3 of Turbo data parked on tape for later analysis
- Optimize number of streams for Turbo data for faster analysis I/O access
- Reduction of data disk replicas and simulation data
- 2016 stripping will replace previous version on disk
 - Analysis work needs to adapt accordingly
- Introduction of "working group productions" ramping up
 - Production of further analysis formats handled centrally by production team

Run 3 upgrade – Software

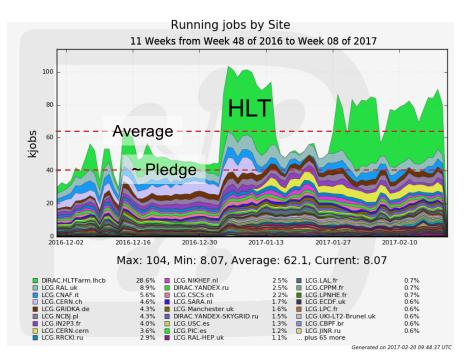
- First results of multithreaded task-parallel "mini reconstruction" available:
 - Very good scaling with number of physical processor cores
 - Big improvements in memory usage
- Next steps:

- Performance improvements via code vectorization and event model re-organisation
- Integrate more algorithms
- Demonstrator of technical changes by March '17

Run 3 upgrade – Training

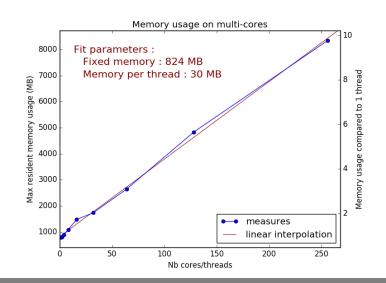
- The vast majority of the LHCb code base needs to be touched for the upgrade version of the framework
- \rightarrow involvement of sub-system developers is mandatory
- Approached by training and hands-on hackathons

Summary


- Very good usage of resources in 2016 + EYETS
 - HLT farm is a big boost to the CPU resources
- Several Run 2 resource optimizations and mitigation measures are in place, more to come
 - Parking of Turbo data on tape for later analysis
 - Software optimization code vectorization, fast simulation
 - Replacement instead of parallel usage of stripping versions on disk
- First encouraging results of Run 3 upgrade activities
 - Multi-threaded, task-parallel framework functional and performant

Executive Summary

LHCb – Operations & Run 3 Upgrade



- Very good usage of HLT farm for simulation workflows since Xmas break
 - When available ~ doubles
 LHCb CPU resources

21 Feb '17

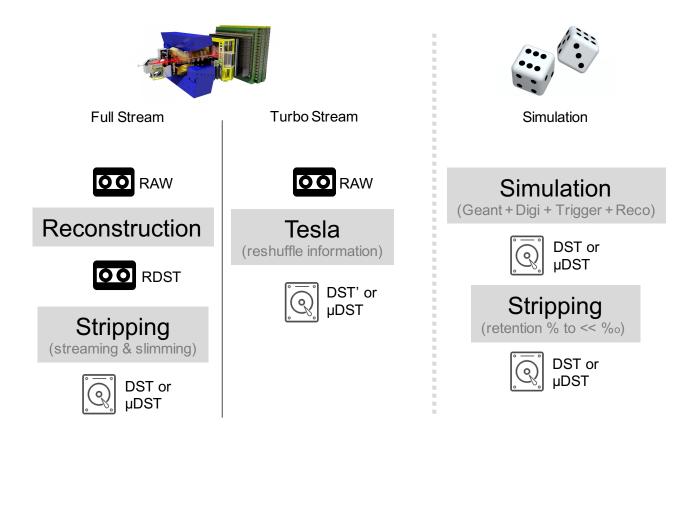
 First version of multithreaded and task-parallel framework for Run 3 functional and performant

 Very good scaling with physical processor cores and big improvements in memory usage

LHCb – Run 2 Resource Optimization

- Run 3 upgrade software backported to Run 2 applications
 - Parts of reconstruction and tracking with up to 30 % improvements
- Software stack build with SSE 4.2 vectorization enabled
 - Focus for upgrade software stack \rightarrow more backports possible
- First fast simulation options available in production
 - Eg. Customized use of sub-detectors
- Changes in data processing model
 - Reduction of disk replicas, skipping of "stripping" campaigns

Feb '17


Parking of 1/3 of Turbo data on tape for later analysis

Main LHCb processing workflows

File Type	Event Size (kB)
RAW	50
RDST	40
Data DST	65
Data µDST	10
MC DST	200
MC µDST	60

