LHCC Referee Meeting 09/05/2017

ALICE Status Report

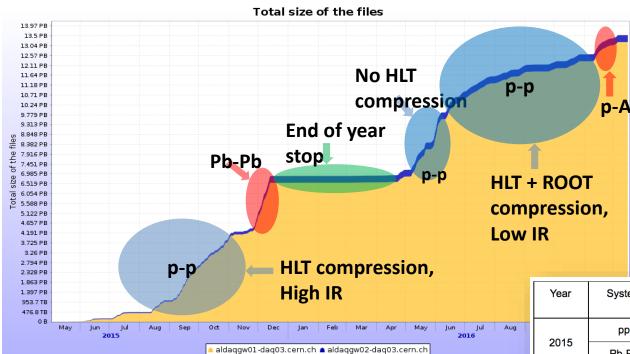
Predrag Buncic

CERN

Run 2: Data taking objectives

For Pb-Pb collisions:

- Reach the target of 1 nb⁻¹ integrated luminosity in Pb-Pb for rare triggers.
- Increase the statistics of the unbiased data sample, including minimum bias and centrality triggered events.

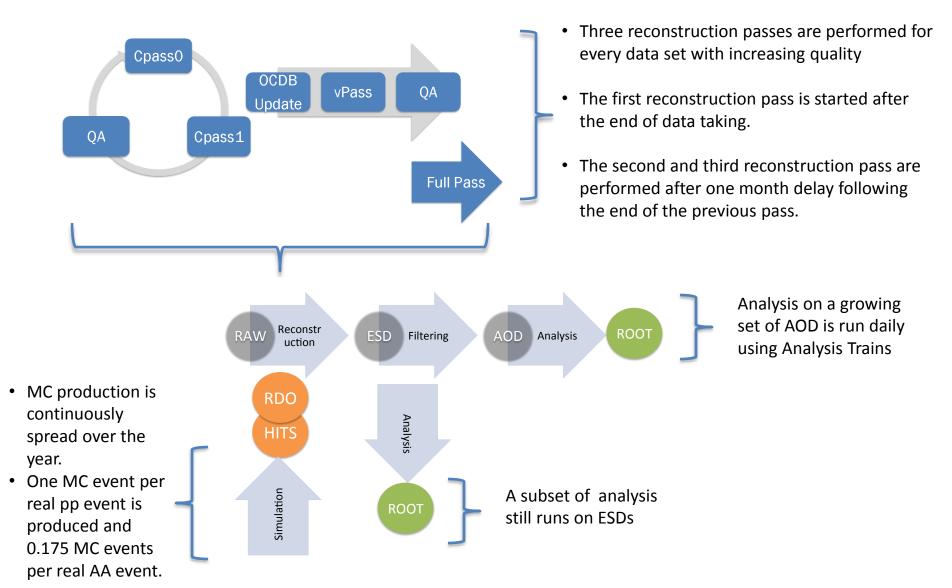

For pp collisions:

- Collect a reference rare triggers sample with an integrated luminosity of 40 pb⁻¹, which is equivalent to the 1 nb⁻¹ sample in Pb-Pb collisions.
- Enlarge the statistics of the unbiased data sample, including minimum bias collisions at top energy.
- Collect a reference sample of 10⁹ events at the reference energy of 5.02 TeV

For p-Pb collisions:

Enlarge the existing data sample, in particular the unbiased events sample at 5.02
 TeV.

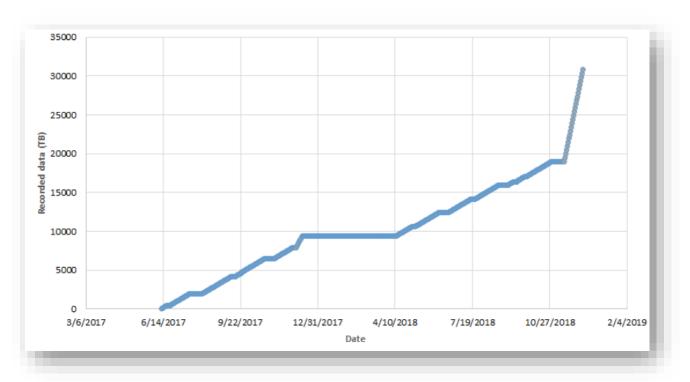
Run 2: Progress and data processing status

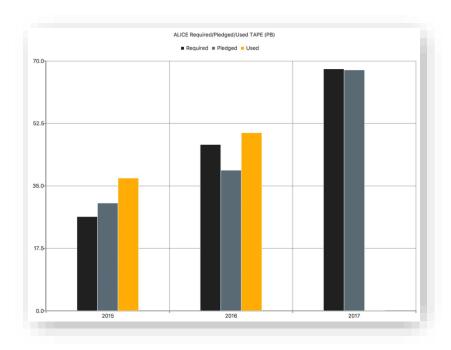


- Readout electronics upgrade (RCU2) with goal to increase the readout rate by a factor of 2
 - Originally planned for 2015, the final version installed from 2016

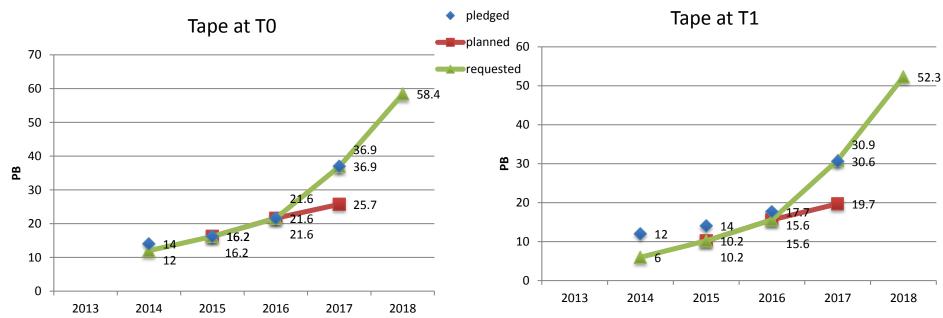
Year	System	Central barrel events	Average event size (MB)	Data volume (PB)
2015	pp	900 M	4.7	4.23
	Pb-Pb	210 M	12	2.52
2016	pp	1400 M	3.9	5.5
	p-Pb	880 M	1.7	1.5

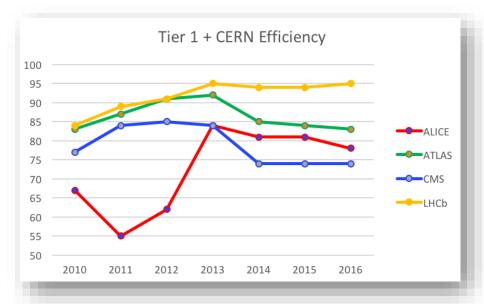
- Data taking follows strictly the approved physics programme
 - Better data quality by limiting the Interaction Rate
 - Continuously reducing RAW data volume by improving the HLT data compression
 - RAW data size reduction by factor ~4.3 to ~5.5 in 2016, expecting factor 6 in 2017
- Data processing new high-precision calibration schema developed and certified
 - 2015 Pb-Pb and 2016 p-Pb data fully processed, p-p data processing at 90%
 - 2015 p-p data at 60%, processing will be completed by June 2017

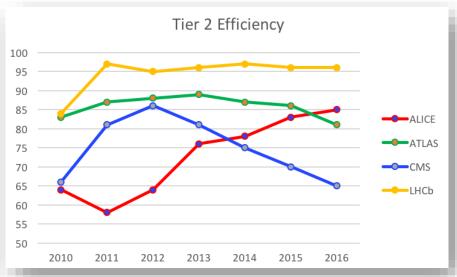

Run 2: Computing model

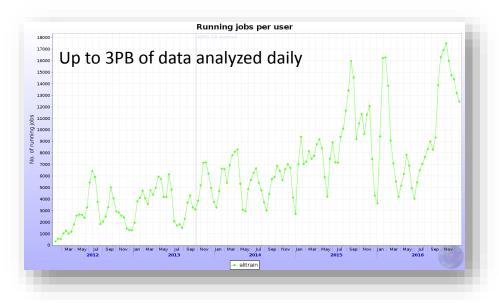

Changes in Computing Model Parameters

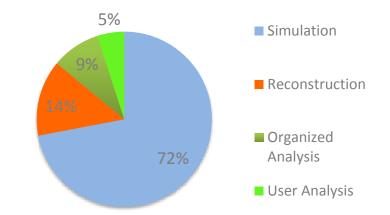
- 1. RCU2 not ready for 2015 pp/PbPb data taking and became fully operational in 2016
 - The most data intensive data taking with central PbPb collisions postponed to 2018
 - Requires CPU intensive simulation campaign
- 2. Larger than expected distortions in TPC observed at high IR
 - Fully corrected during 2016 at the cost of +5% CPU increase
- 3. Average observed pp event size larger than expected (3MB instead of 1.1MB)
 - Due to pileup that we cannot reject online
- 4. HLT compression improved
 - Compression 4.3 -> 5.5 -> 6
- 5. Improved data taking efficiency
 - ALICE efficiency 95%
 - LHC efficiency 40% -> 60%
- 6. Taking data at lower IR
 - Increased combined efficiency allows us to collect expected number of triggers while taking data at lower IR reducing the pileup, event size and processing time
- All these factors were taken into account in October 2016 when we updated our requirements for 2017-2019.


Expectations for 2017 and 2018 data volume

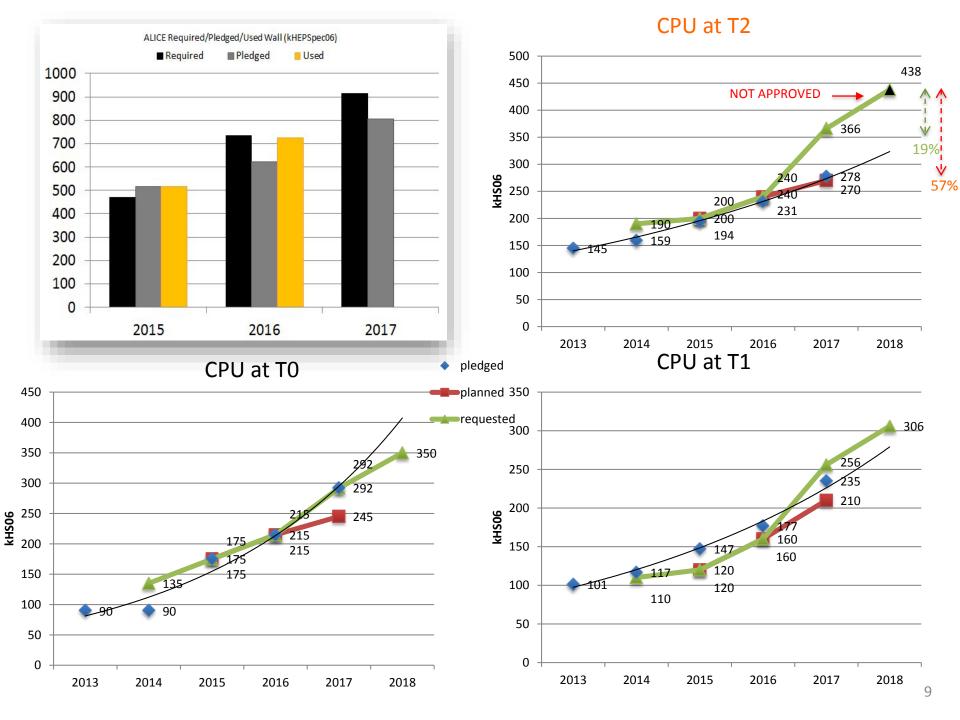

- During pp data taking mode will be set to limit the TPC readout rate to 400 Hz
 - The goal is to reach the statistics objective set for Run 2 in all trigger categories as well as at the reference energy of 5.02 TeV
 - The total amount of data recorded will be 17.5 PB
- During the Pb-Pb run in 2018, assuming the HLT compression of a factor of 6
 we anticipate a total readout rate of 10 GB/s
 - The total amount of data recorded will be 12 PB

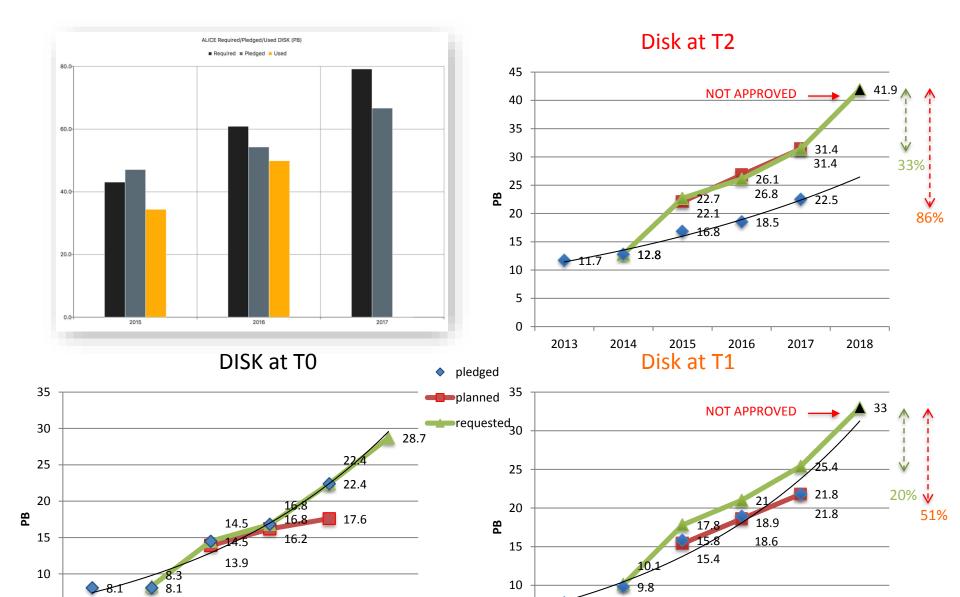


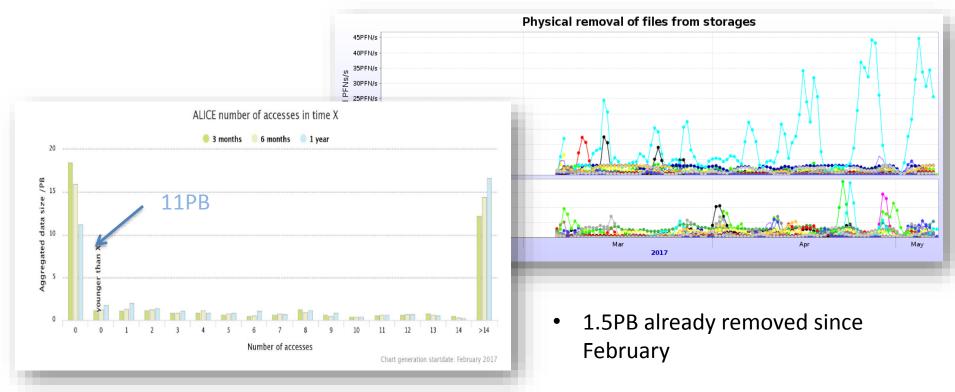

 Thanks to CERN and T1s, our tape request has been fully pledged in 2017



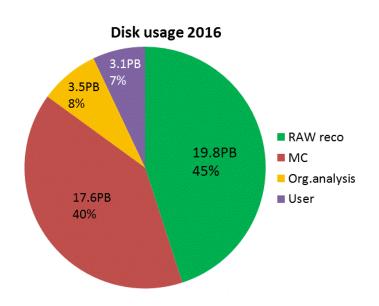
CPU Usage



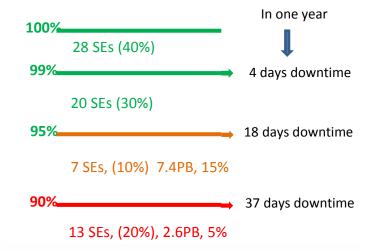




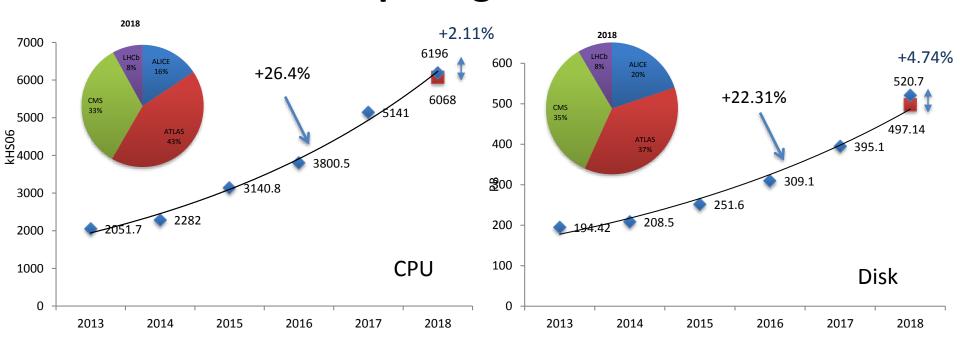
- Up to 130k concurrent jobs
- Available resources are effectively used in spite of increasing complexity and data volume

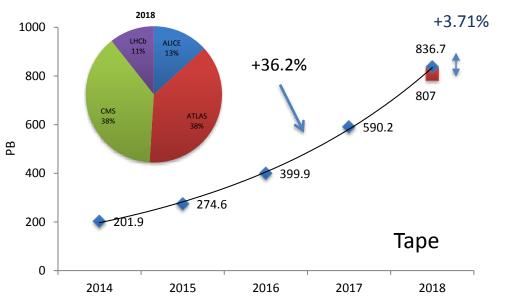


Data popularity and cleanup


- Relatively significant volume of data (11PB) that has not been accessed in past 12 months
 - If the window is enlarged to 2 years unused data portion drops down to 2.5 PB
 - We do not systematically back up ESD/AOD to tape, only RAW data
 - Regular cleanup procedure with cooperation of Physics Working Groups
 - Automated cleanup procedure would require
 - To systematically back up ESD/AOD to tape
 - An additional tape budget and larger disk buffer in front of tape system to accommodate ESD/AODs in addition to raw data

What occupies ALICE disk storage?


- Each raw event is stored only once on tape and temporary staged in staging disk buffer
- Old inactive MC productions are systematically removed
- All reconstruction output + associated MC
 - Recent ESDs are stored as single file w/o replicas due to lack of disk space
 - 2 replicas for AODs
- Already operating at the lowest limit with no room for more reduction of disk usage
 - ESD based analysis is at the pain threshold with up to 5% jobs failing in each round


Storage availability

Data annual a TATTI TO Channe								
Data occupying T0/T1/T2 Storage								
	Event Size [MB]	# of copies on disk		# of versions	# of copies on tape			
		minimal	typical					
RAW	3 (pp) 11 (Pb-Pb)			1	2 (one at T0 + one at one of the T1s)			
ESD	10 to 30% of RAW, depending on type of collision system and luminosity	1	1 1	1-3				
AOD	10 to 15% of RAW, depending on type of collision system and luminosity	1	2.6 2	1-4 per ESD version				
MC ESD	0.37 (pp) 2.7 (Pb-Pb)	1	4 1	1				
MC AOD	30% of MC ESD	1	<u>2∕6</u> 2	2				

ALICE share of computing resources

- ALICE share of total resources remains balanced vs. the other experiments
- Historically, growth in all resource categories was faster than +20% year on year
- The impact of fully implemented ALICE 2018 request vs just +20% increase is relatively small

Projection 2017-2020 assuming 20% growth

		CPU		Disk		Таре				
	Tier	Requested ¹⁾	Pledged ²⁾	missing	requested	pledged	missing	requested	pledged	missing
2017	0	292.00	292.00	0.00%	20.60	22.40	8.74%	34.5	36.9	6.96%
	1	256.00	235.48	-8.02%	24.40	21.81	-10.64%	26.60	30.60	15.04%
	2	366.00	323.05	-11.74%	31.20	26.39	-15.41%			
	Total	914.00	850.53	-6.94%	76.20	70.60	-7.35%	61.10	67.50	10.47%
2018	0	350.00	350.40	0.11%	27.00	26.88	-0.44%	55	55	
	1	306.00	282.58	-7.65%	32.00	26.17	-18.23%	41.00	41.00	
	2	438.00	387.66	-11.49%	41.00	31.67	-22.76%			
	Total	1094.00	1020.63	-6.71%	100.00	84.72	-15.28%	96.00	96.00	0.00%
2019	0	534.00	420.48	-21.26%	33.60	32.26	-4.00%	55	55	
	1	501.00	339.09	-32.32%	39.90	31.40	-21.31%	49.50	49.50	
	2	635.00	465.19	-26.74%	51.10	38.00	-25.63%			
	Total	1670.00	1224.76	-26.66%	124.60	101.66	-18.41%	104.50	104.50	0.00%
2020	0	534.00	504.58	-5.51%	33.60	38.71	15.20%	55	55	
	1	501.00	406.91	-18.78%	39.90	37.68	-5.57%	49.50	49.50	
	2	635.00	558.22	-12.09%	51.10	45.61	-10.75%			
	Total	1670.00	1469.71	-11.99%	124.60	121.99	-2.09%	104.50	104.50	0.00%

¹⁾ The resource request is based on April submission to C-RSG

- If we are forced to remain under 20% resource growth envelope and cannot find additional resource we won't be able to process 2018 pp and PbPb data during 2019
- The only solution would be to extend the processing time to 2019 + 2020
- This would put ALICE at disadvantage with respect to other LHC experiments in areas were they are competitive with us
- Manpower would remain tied to Run2 processing during time that we need to focus on preparations for Run3

²⁾ In this table the resources provided by US, Japan and Austria are counted as fully pledged

Conclusions

- ALICE data taking
 - Strictly following the approved physics programme
 - Intensifies in second half of Run 2 as we profit from improved readout and LHC performance to catch up with our plans
- Pledged and delivered computing resources
 - Systematic under-pledges and under-delivery at T2s over several years
 - This artificially skews our 2018 requirements/pledges ratio prompting C-RSG to question our 2018 requirements
- 2018 data taking will be particularly data intensive
 - pp and PbPb runs with high multiplicity central triggers
 - If our request are not fulfilled, we will have to extend the processing time to 2019 + 2020
- Radical measures already taken
 - Reducing replicas, now at absolute minimum (no replicas for any file but AODs), aggressive disk cleanup
- We are in discussion with FAs and have positive initial feedback concerning the pledges but we need support for LHCC/C-RSG or else there will be no funding available for us in October