
1

MDISim : H.B. + Manuela Boscolo
Tools for Flexible Optimisation of IR Designs with Application to FCC, IPAC 2015 tupty031

Flexible ROOT based machine detector interface toolbox between
accelerator described by MAD-X sequence
particle interactions in the IR/detector regions using programs like GEANT4 ref1, ref2

Guideline : use as much as possible existing, openly available and well supported codes
improve them if needed
examples : automatic MAD-X sequence editing MAKETHIN
 GEANT4 G4SynchrotronRadiation.cc, TestEm16

Technical presentation, concepts

• geometry, coordinate transformations : Euclidian EU CS Courant-Snyder
• bending magnets, curved/straight (BOX, TUBE, TORUS), orbit correctors
• quadrupoles
• Generation of geometries, as suitable for input particles shower simulations - GEANT4

FCC-ee MDI meeting#7, H. Burkhardt, Tue. 11/10/2016

MDISim, update

https://jacowfs.jlab.org/conf/proceedings/IPAC2015/papers/tupty031.pdf
https://en.wikipedia.org/wiki/ROOT
https://en.wikipedia.org/wiki/Geant4
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/j.nima.2016.06.125
http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/tupro063.pdf
http://cdsweb.cern.ch/record/1038899
http://indico.cern.ch/event/571015/

Basics : Coordinate systems, naming, ref. links

2

Two different coordinate systems --- related to general geometry as described in Wikipedia :

• Three-dimensional Euclidian space
Cartesian coordinate system in 3-dim Euclidean_geometry
also known as global_system in MAD-X
Natural choice for tracking around detectors, neutrals, GEANT4, (off-momentum)

• local accelerator coordinates, described in the MAD8 physics guide
also valid as basis for current MAD-X
Special case of Curvilinear coordinates related to Frenet-Serret formulas
with 3 dimensions (x, y, s) here referred to as Courant-Snyder coordinates
along the design path of the accelerator
Used everywhere on the accelerator side : twiss, multi-turn tracking, long term stability
exception : the MAD-X survey module, which generate global cartesian coordinates
at element boundaries as required to position magnets in real space (survey in tunnel)

Essential basic ingredient MDISim : EU <--> CS

https://www.wikipedia.org
https://en.wikipedia.org/wiki/Three-dimensional_space
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Euclidean_geometry
http://mad.web.cern.ch/mad/madx.old/Introduction/global_system.html
http://mad8.web.cern.ch/mad8/doc/phys_guide.ps.gz
http://mad.web.cern.ch/mad/
https://en.wikipedia.org/wiki/Curvilinear_coordinates
https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas

Transformation CS <--> EU

3

Design path : generated by the connection of the elements in the sequence
Initial position and rotation + two types of elements
arc segment : bending magnets -- angle α and bending radius ρ
straight : all other elements, including quadrupoles, correctors

Local Courant Snyder v_cs = (x, y, s) s along design path, x, y perpendicular to path
Global Euclidian v_eu = (x, y, z) from single origin, for MDI typically the IR
Transformation 3 dim shift vector V and rotation matrix W for every volume
Orthogonal 3x3 matrix (SO3), defined by 3 angles θ, φ, ψ, using the MAD convention
related to https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

John Jowett’s Mathematica packages. Transformation with ref point x,y,z, and 3 rotation angles. Accel-
eratorCoordinatesDemo.nb. With a transformation from a global Euclidian system, typically centred at one IP
in the plane of the ring, to the local Courant-Snyder coordinates.

Local Courant-Snyder or short
CS

with x, y at s. Euclidian group (combination of translation and rotation)
acting on (x,y,z). The linear transformation can be written in Matrixform. The transformation matrix can be
inverted to transform back. GlobaltoCS from Euclidian to Courant-Snyder.

When using both CS (x,y,s) and EU (x,y,z) system distinguish by calling EU (x2, y2, z) or using subscript
EU

.
The survey coordinates are read using, IR2:

LHCB1IR2Survey.tfs, LHCB2IR2Survey.tfs, with ”S.DS.L2.B2” = 2785.541442, x = -852.1287856.
Files also exist for the other IRs. IR1:

LHCB1IR1Survey.tfs, LHCB1IR1Survey.tfs, with ”S.DS.L1.B1” = 12782.42019 , x = -8399.329757.
IR5:

LHCB1IR5Survey.tfs, LHCB2IR5Survey.tfs. with ”S.DS.L5.B1” = 12782.11546 , x = -8399.329635.

Figure 31: AcceleratorCoordinatesDemo. Beam envelopes around IR8 in global Euclidian coordi-
nates.

See Fig.31, which shows beam envelopes. Beam envelopes are easily defined in the local Courant-Snyder.
Apertures more tricky ?
From Mad8 Physics Guide chapter 9 survey and AcceleratorCoordinatesDemo.nb:
Angle of rotation ✓ (azimuth) about the global Y-axis, between the global Z-axis and the projection of the refer-
ence orbit onto the (Z, X)-plane. A positive angle ✓ forms a right-hand screw with the Y-axis. Sufficient to de-
scribe a flat machine. Using the sign conventions for rotations of Wikipedia Rotation formalisms in three dimensions

ThetaCS[✓] =

0

@
cos(✓) 0 sin(✓)

0 1 0

� sin(✓) 0 cos(✓)

1

A
= R

y

(�✓) (7.1)

Elevation angle �, i.e. the angle between the reference orbit and its projection onto the (Z, X)-plane. A positive
angle � corresponds to increasing Y. If only horizontal bends are present, the reference orbit remains in the
(Z, X)-plane. In this case � is always zero.

PhiCS[�] =

0

@
1 0 0

0 cos(�) sin(�)

0 � sin(�) cos(�)

1

A
= R

x

(�) (7.2)

Roll angle about the local s-axis, i.e. the angle between the intersection of the (x, y) and (Z, X)-planes and

69

the local x-axis. A positive angle forms a right-hand screw with the s-axis.

PsiCS[] =

0

@
cos() � sin() 0

sin() cos() 0

0 0 1

1

A
= R

z

(�) (7.3)

which are the standard -y,x,-z rotations as defined in Wikipedia Rotation formalisms in three dimensions and
my tex under Rotation in 3-dim.
WCS[✓,�,] is the matrix specifying the orientation of the local Courant-Snyder coordinate system, given by
the product ThetaCS[✓].PhiCS[�].PsiCS[].

WCS[✓,�,] =

0

@
cos(✓) cos()� sin(✓) sin(�) sin() � cos() sin(✓) sin(�)� cos(✓) sin() cos(�) sin(✓)

cos(�) sin() cos(�) cos() sin(�)

� cos() sin(✓)� cos(✓) sin(�) sin() sin(✓) sin()� cos(✓) cos() sin(�) cos(✓) cos(�)

1

A

(7.4)

same as the W matrices constructed element by element in the code, see Eq. 7.8. In practice: when a lattice is
read, it is most useful to reconstruct (or read when already available) the the survey coordinates V

i

and keep
internally transformation matrices W

i

, as done the CourantSnyderSystem::CourantSnyderSystem constructor
in Twiss util.C. When the angles are ✓,�, are known the matrices can be calculated as above and vice versa
as described below.

7.3 direction, clockwise, anticlockwise
Wikipedia clockwise, curvature, Euclidean geometry.
Mad8 physics guide Mad8 Physics Guide.

For motion in the magnetic field and synchrotron radiation the direction must be defined. Unless specified
otherwise, assume the following :
By default (sign=+1) move in direction of increasing s which is also the order in which elements are read from
twiss, survey twiss files. For MDISim often starting at the IP at 0. By default moving then away from the IP.
Opposite with sign=-1;

7.4 planar
Wikipedia plane, surface, normal vector, Ellipsoid.
Check to which an accelerator is in a plane - by finding the center and plane through points which mini-
mizes the distances from the plane. Implemented by following to some extend 2012/06/fitting-plane-to-point-
cloud.html.

Eigenvalues and vectors for symmetric 3 ⇥ 3 matrices can be determined analytically, see analytical-
expression-for-the-eigenvectors-of-a-3x3-real-symmetric-matrix, wolframalpha.

See Efficient numerical diagonalization of hermitian 3x3 matrices, RobustEigenSymmetric3x3.pdf. Or
also GteSymmetricEigensolver3x3.h, tested in ansiitest/main SymmetricEigensolver3x3.C. Not clear really
better here than the more standard algorithm.

Sum up distances with respect to the centre

M =

0

@

P
xx

P
xy

P
xzP

xy

P
yy

P
yzP

xz

P
yz

P
zz

1

A (7.5)

Normalize, invert, and determine Eigenvalues and vectors. See MyTEve.C. One issue is that a completely flat
machine with all y = 0 results in a matrix with determinant=0 which can not be inverted. ”Diagonalizing” the
distances. Flat means only one single non-negligible eigenvalue.

70

John Jowett’s Mathematica packages. Transformation with ref point x,y,z, and 3 rotation angles. Accel-
eratorCoordinatesDemo.nb. With a transformation from a global Euclidian system, typically centred at one IP
in the plane of the ring, to the local Courant-Snyder coordinates.

Local Courant-Snyder or short
CS

with x, y at s. Euclidian group (combination of translation and rotation)
acting on (x,y,z). The linear transformation can be written in Matrixform. The transformation matrix can be
inverted to transform back. GlobaltoCS from Euclidian to Courant-Snyder.

When using both CS (x,y,s) and EU (x,y,z) system distinguish by calling EU (x2, y2, z) or using subscript
EU

.
The survey coordinates are read using, IR2:

LHCB1IR2Survey.tfs, LHCB2IR2Survey.tfs, with ”S.DS.L2.B2” = 2785.541442, x = -852.1287856.
Files also exist for the other IRs. IR1:

LHCB1IR1Survey.tfs, LHCB1IR1Survey.tfs, with ”S.DS.L1.B1” = 12782.42019 , x = -8399.329757.
IR5:

LHCB1IR5Survey.tfs, LHCB2IR5Survey.tfs. with ”S.DS.L5.B1” = 12782.11546 , x = -8399.329635.

Figure 31: AcceleratorCoordinatesDemo. Beam envelopes around IR8 in global Euclidian coordi-
nates.

See Fig.31, which shows beam envelopes. Beam envelopes are easily defined in the local Courant-Snyder.
Apertures more tricky ?
From Mad8 Physics Guide chapter 9 survey and AcceleratorCoordinatesDemo.nb:
Angle of rotation ✓ (azimuth) about the global Y-axis, between the global Z-axis and the projection of the refer-
ence orbit onto the (Z, X)-plane. A positive angle ✓ forms a right-hand screw with the Y-axis. Sufficient to de-
scribe a flat machine. Using the sign conventions for rotations of Wikipedia Rotation formalisms in three dimensions

ThetaCS[✓] =

0

@
cos(✓) 0 sin(✓)

0 1 0

� sin(✓) 0 cos(✓)

1

A
= R

y

(�✓) (7.1)

Elevation angle �, i.e. the angle between the reference orbit and its projection onto the (Z, X)-plane. A positive
angle � corresponds to increasing Y. If only horizontal bends are present, the reference orbit remains in the
(Z, X)-plane. In this case � is always zero.

PhiCS[�] =

0

@
1 0 0

0 cos(�) sin(�)

0 � sin(�) cos(�)

1

A
= R

x

(�) (7.2)

Roll angle about the local s-axis, i.e. the angle between the intersection of the (x, y) and (Z, X)-planes and

69

general 3-dim rotation

On the orientation in memory see also c multi dimensional arrays.htm.
Inside root. TGeoMatrix.cxx.html, locally TGeoMatrix.cxx
Rotations around each axis are defined in TGeoMatrix.cxx as

1 vo id TGeoCombiTrans : : Rota teX (D o u b l e t a n g l e)
2 vo id TGeoCombiTrans : : Rota teY (D o u b l e t a n g l e)
3 vo id TGeoCombiTrans : : Ro ta t eZ (D o u b l e t a n g l e)

where for z

1 vo id TGeoCombiTrans : : Ro ta t eZ (D o u b l e t a n g l e)
2 {
3 / / R o t a t e a b o u t Z a x i s wi th a n g l e e x p r e s s e d i n d e g r e e s .
4 i f (! f R o t a t i o n | | ! T e s t B i t (kGeoMatrixOwned)) {
5 i f (f R o t a t i o n) f R o t a t i o n = new TGeoRota t ion (⇤ f R o t a t i o n) ;
6 e l s e f R o t a t i o n = new TGeoRota t ion () ;
7 S e t B i t (kGeoMatrixOwned) ;
8 }
9 S e t B i t (kGeoRota t i on) ;

10 c o n s t D o u b l e t ⇤ r o t = f R o t a t i o n �>G e t R o t a t i o n M a t r i x () ;
11 D o u b l e t p h i = a n g l e ⇤TMath : : DegToRad () ;
12 D o u b l e t c = TMath : : Cos (p h i) ;
13 D o u b l e t s = TMath : : S in (p h i) ;
14 D o u b l e t v [9] ;
15 v [0] = c⇤ r o t [0]� s ⇤ r o t [3] ;
16 v [1] = c⇤ r o t [1]� s ⇤ r o t [4] ;
17 v [2] = c⇤ r o t [2]� s ⇤ r o t [5] ;
18 v [3] = s ⇤ r o t [0] + c⇤ r o t [3] ;
19 v [4] = s ⇤ r o t [1] + c⇤ r o t [4] ;
20 v [5] = s ⇤ r o t [2] + c⇤ r o t [5] ;
21 v [6] = r o t [6] ;
22 v [7] = r o t [7] ;
23 v [8] = r o t [8] ;
24 f R o t a t i o n �>S e t M a t r i x (v) ;
25 f R o t a t i o n �>S e t B i t (kGeoRota t i on) ;
26 i f (! I s T r a n s l a t i o n ()) r e t u r n ;
27 v [0] = c⇤ f T r a n s l a t i o n [0]� s ⇤ f T r a n s l a t i o n [1] ;
28 v [1] = s ⇤ f T r a n s l a t i o n [0] + c⇤ f T r a n s l a t i o n [1] ;
29 v [2] = f T r a n s l a t i o n [2] ;
30 memcpy (f T r a n s l a t i o n , v , kN3) ;

The root routine correspondence:
TGeoRotation::RotateX is R

x

(��)
TGeoRotation::RotateY is R

y

(�✓)
TGeoRotation::RotateZ is R

z

(�)

There are also the versions with rotation + translation
TGeoCombiTrans::RotateX is R

x

(��)⇥M
TGeoCombiTrans::RotateY is R

y

(�✓)⇥M
TGeoCombiTrans::RotateZ is R

z

(�)⇥M

The translation from Courant Snyder to Euclidian can be done in root by

Wcs[✓,�,] = R

y

[�✓]R
x

[�]R

z

[] = RotateY[✓] RotateX[��] RotateZ[] (7.7)

implemented in MyRoot.C. For a flat machine the first RotateY[✓] transformation is sufficient.
See my math/EulerCS.nb.
TGeoRotation uses SetAngles(phi, theta, psi), which is not well adapted to what we need here.

72

(Z, X)-plane. In this case � is always zero.

PhiCS[�] =

0

@
1 0 0

0 cos(�) sin(�)

0 � sin(�) cos(�)

1

A
= R

x

(�) (7.2)

Roll angle about the local s-axis, i.e. the angle between the intersection of the (x, y) and (Z, X)-planes and
the local x-axis. A positive angle forms a right-hand screw with the s-axis.

PsiCS[] =

0

@
cos() � sin() 0

sin() cos() 0

0 0 1

1

A
= R

z

(�) (7.3)

which are the standard -y,x,-z rotations as defined in Wikipedia Rotation formalisms in three dimensions and
my tex under Rotation in 3-dim.
Wcs[✓,�,] is the matrix specifying the orientation of the local Courant-Snyder coordinate system, given by
the product ThetaCS[✓] PhiCS[�] PsiCS[].

Wcs[✓,�,] = ThetaCS[✓] PhiCS[�] PsiCS[] =

0

@
cos(✓) cos()� sin(✓) sin(�) sin() � cos() sin(✓) sin(�)� cos(✓) sin() cos(�) sin(✓)

cos(�) sin() cos(�) cos() sin(�)

� cos() sin(✓)� cos(✓) sin(�) sin() sin(✓) sin()� cos(✓) cos() sin(�) cos(✓) cos(�)

1

A

(7.4)

same as the W matrices constructed element by element in the code, see Eq. 7.8. In practice: when a lattice is
read, it is most useful to reconstruct (or read when already available) the the survey coordinates V

i

and keep
internally transformation matrices W

i

, as done the CourantSnyderSystem::CourantSnyderSystem constructor
in Twiss util.C. When the angles are ✓,�, are known the matrices can be calculated as above and vice versa
as described below.

7.3 direction, clockwise, anticlockwise
Wikipedia clockwise, curvature, Euclidean geometry.
Mad8 physics guide Mad8 Physics Guide.

For motion in the magnetic field and synchrotron radiation the direction must be defined. Unless specified
otherwise, assume the following :
By default (sign=+1) move in direction of increasing s which is also the order in which elements are read from
twiss, survey twiss files. For MDISim often starting at the IP at 0. By default moving then away from the IP.
Opposite with sign=-1;

7.4 planar
Wikipedia plane, surface, normal vector, Ellipsoid.
Check to which an accelerator is in a plane - by finding the center and plane through points which mini-
mizes the distances from the plane. Implemented by following to some extend 2012/06/fitting-plane-to-point-
cloud.html.

Eigenvalues and vectors for symmetric 3 ⇥ 3 matrices can be determined analytically, see analytical-
expression-for-the-eigenvectors-of-a-3x3-real-symmetric-matrix, wolframalpha.

See Efficient numerical diagonalization of hermitian 3x3 matrices, RobustEigenSymmetric3x3.pdf. Or
also GteSymmetricEigensolver3x3.h, tested in ansiitest/main SymmetricEigensolver3x3.C. Not clear really
better here than the more standard algorithm.

Sum up distances with respect to the centre

M =

0

@

P
xx

P
xy

P
xzP

xy

P
yy

P
yzP

xz

P
yz

P
zz

1

A (7.5)

70

https://en.wikipedia.org/wiki/Rotation_group_SO(3)
https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

MDISim transformation CS <--> EU

4

Set up transformation for all volumes, just needs lengths L and angles (0 if straight)
of all consecutive elements in the sequence
read from tfs table generated with twiss bending radius ρ = L / Angle

CourantSnyderSystem(const valarray<double>& L,const valarray<double>& Angle,const Vec3&,
 V0=Vec3(0,0,0),const Mat3x3& W0=M3x3::Identity,unsigned int verbose=0); 
// set up internally all element eu (end) positions V and rotation W
if(fabs(Angle[i])<eps) // straight element -- all except bends
{
 R=Vec3(0,0,L[i]); // shift by length
 W[i]=W[i-1]; // no change in rotation, same matrix next step for next element
}
else // bend, arc segment
{
 double rho=L[i]/Angle[i];
 R=Vec3(rho*cos(Angle[i])-rho, 0, rho*sin(Angle[i])); // displacement in element
 S=Rot_y(Angle[i]);
 W[i]=W[i-1]*S; // rotation, used next step for next element; same as WCS_mat3(theta,phi,psi);
 }
 V[i] = W[i-1] R[i] + V[i-1]; // eu (end) position of volume

CS to EU
SurVey ToEuclidian(const Vec3& V_cs); // Survey is eu vector and angles (x, y, z , θ, φ, ψ)

EU to CS - as used for example to determine the GEANT4 tracking precisions
unsigned int FindVolume(const Vec3& V_eu); // find Volume (not trivial)
Vec3 ToCS(unsigned int ivol,const Vec3& V_eu); // EU -> VS

Main transformation code

5

CS to EU
Vec3 R;
if(fabs(sl)<eps || fabs(Angle[i])<eps) // 0-length or straight element
{
 R=V_cs-Vec3(0,0,spos[i-1]); // straight dist from start
}
else // in bend
{
 double rho=L[i]/Angle[i];
 alfa=(V_cs.r[2]-spos[i-1])/rho; // part of bend angle to current position
 R=Vec3((V_cs.r[0]+rho)*cos(alfa)-rho, V_cs.r[1], (V_cs.r[0]+rho)*sin(alfa)); // point on circular path
}
Vec3 V_eu=W[i-1]*R+V[i-1];

Eu to CS
Finding the volume ivol may require several iterations : find what is close,
transform to volume and check if really inside; then
Mat3x3 Winv=Transpose(W[ivol-1]);
Vec3 R=Winv*(V_eu-V[ivol-1]);
Vec3 V_cs;
if(L[ivol]<eps || fabs(Angle[ivol])<eps) // straight element
{
 V_cs=R+Vec3(0,0,spos[ivol-1]);
}
else // curved, in bend
{
 double rho=L[ivol]/Angle[ivol];
 Vec3 R_rho=R+Vec3(rho,0,0);
 double alfa=atan(R_rho.r[2]/R_rho.r[0]);
 double rhoprime=R_rho.r[0]/cos(alfa); // rho+x_cs
 double x_cs=rhoprime-rho;
 double s=spos[ivol-1]+rho*alfa;
 V_cs=Vec3(x_cs, R.r[1], s);
 }

ρ

z’euxcss[i-1]
s[i]

α

ρ sin α

ρ
co

s α

Testing

6

Using dedicated MAD-X model sequences, w/o thick slicing SingleBend, SingleQuad..
going back and forward EU, CS; varying initial position, rotation ...
here on simple example :

CS coordinates show as expected the
weak (geometrical) “focusing”

z_eu [m]
1.5− 1− 0.5− 0 0.5 1 1.5

x_
eu

 [m
]

3−

2.5−

2−

1.5−

1−

0.5−

0

s_cs_back [m]
0 1 2 3 4 5 6 7 8 9

x_
cs

_b
ac

k
[m

]

0.05−

0.04−

0.03−

0.02−

0.01−

0

0.01

0.02

0.03

0.04

0.05

SingeBend.madx, geometry using L, angles from twiss table
trajectory start shifted up by 5 cm
translated to v_eu using MDISim

Check backwards, v_eu --> v_cs

SingleBend circle
10 m circumference

trajectory shifted up 5 cm

Improving Geometry and Tracking details

7

MBXA.A4LA.H

M
BXA.B4LA.H

M
BRD.A4LA.H1

MBRD.B4LA.H1

B1

B2

example : fcc-hh SR in IR

strong scaling
here x, y × 1000
essential for FCC display

Improving Geometry and Tracking details

7

MBXA.A4LA.H

M
BXA.B4LA.H

M
BRD.A4LA.H1

MBRD.B4LA.H1

B1

B2

improved, zoomed

example : fcc-hh SR in IR

strong scaling
here x, y × 1000
essential for FCC display

Bending magnets

8

Different types on MAD-X level

1. SBEND

2. RBEND

3. Orbit corrector (MAD-X type called HKICKER, VKICKER misleading)

Same for Synchrotron Radiation : particle vector and field vector B (Ec ∝ γ2 B⊥)

Differences on geometry level :
BENDs define design path = centre of beam pipe
turning off a bend on MAD-X level not losing the beam -- changing the accelerator geometry
RBEND - Tube, Box geometry, for optics = dipdege + sbend + dipedge (translated by makethin)
SBEND - Torus segment
Corrector changes the particle trajectory --- no change in geometry

α

ρ

 α

α/2

Bending magnets, geometry generation

9
(ρ,0,0)

(ρ cos α, ρ sin α, 0)

α

Torus, defined in
ROOT and GEANT4

Torus generation / positioning

10

(0, 0, 0)

(ρ (cos α -1), 0, ρ sin α)

(ρ cos α, ρ sin α, 0)

Before rotation

After RotX(π/2)

After RotX(π/2)-(ρ,0,0)

(ρ,0,0)

(ρ cos α, 0, ρ sin α)

x

y

z

α > 0

+ ρ

− ρ

α < 0

0

Principle of constructing a Torus
for negative angle by starting a π
and shifting by +ρ
rather than -ρ

Tested / illustrated for simple ring

11

Geometry generated from MAD-X SingleBend ring lattice, using makethin with 20 thick slices
ROOT/GEANT4 geometry generated with MDISim module Tfs2Geom

Scaling x, y

12

For illustration
no need to be perfect

CourantSnyderSystem::Get_SurVey_Scaled
x_eu=scale_x * V[i].r[0];
y_eu=scale_y * V[i].r[1];
theta = atan2(scale_x* W[i].m[0][2], W[i].m[2][2]);

SingleBend lattice sliced, scale x,y × 2

Test geometry + trajectory + SR cones

13

MAD-X
Geometry : SingleBend ring, 20 slices
Trajectory : with initial angles px=0.05, py=0.1

MDISim : generation of geometry, 3d plotting of geometry and MAD-X trajectory
 calculation and plotting of synchrotron radiation cones

Quadrupole, MAD-X - MDISim level

14

SingleQuad.madx + tracking + plotting in MDISim
Focusing in x (curved to inside), defocusing in y. 500 T/m.
1m long, 20 cm quad radius, 16.5 cm offset.

Quadrupole GEANT4

15

100 GeV e+, SingleQuad geant4 500 T/m.
1m long, 20 cm quad radius, 10 cm offset in x (left) and in y (right)
SynRad off

Geometry + fields automatically generated from MAD-X using BDISM ---> input to Geant4
quadgradient = −brho ∗ K1l ∗ tesla / MagLen ;
G4QuadrupoleMagField∗ quadrupoleMagField = new G4QuadrupoleMagField (quadgradient) ;
fLocalFieldManager = new G4FieldManager (quadrupoleMagField) ;

Comparison MAD-X Geant4 Quadrupole

16

z [m]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x,
y

 [m
]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
y

x

MAD-X
Geant4

MAD-X : using MAKETHIN, 10 thick quadrupole slices to visualize trajectory in quadrupole

GEANT4 Synchrotron Radiation in Quadrupole

17

10 GeV e+, SingleQuad 500 T/m
1m long, 20 cm quad radius, 10 cm offset in x, SynRad on

s_cs [m]
0 10 20 30 40 50 60 70

0.002−

0.0015−

0.001−

0.0005−

0

0.0005

0.001

0.0015

0.002

x_
cs

 [m
]

turn 1

turn 2

GEANT4 default tracking precisions

18

Real life example LEIR
getting few turns with
GEANT4
Here stopped after 100 m
< 1mm deviations
not bad as start

small enough to track without scaling l = 78.54370 m

EU ---> CS to see deviations

0 17.189 m

 21.39 m

first trial - not yet optimized :
GEANT4 has many field tracking options

Concluding remarks

19

Good progress in technical details --- still lots of room for further improvements :

• check / fill / clear volume boundaries

• check options to optimize tracking with fields in GEANT

• which precision is needed / expected for tracking magnetic fields with solenoid around IR

--- at present no solenoid with crossing angle in MAD-X

--- some workaround could be done with MAKETHIN --- but better proper implementation

• which tool best for which purpose --- how much accelerator tracking with G4 ?

• check and if needed define more complex volume types ? - beam screen ?

Start the next major step : Detailed tracking around IR

• Synchrotron radiation with beam pipe, shields, collimation

• Various loss processes, radiative Bhabha, beam-gas ..

• Link to detector side

Our team will be strengthened soon

Marian Lückhof / doctoral student 1. Nov, Belgin Pilicer / fellow 1. Dec

