
Simplified Deep Learning Framework
with DAAL and OpenCL:

towards Hardware Applications
David Ojika

PhD Candidate, University of Florida; Intel Fellow

IML LHC Meeting Nov 2016

Outline

• General overview of deep learning

• Current application of ML in physics
• Deep learning, ROOT

• Intel DAAL
• Overview

• DL with DAAL for Higgs/background classification
• Setup

• Towards HW implementation
• HPC with OpenCL
• Benchmarking

• Deep Learning SDK Demo

Introduction to Neural Networks

• Neural Network
• Data processing system to approximate functions

of large number of parameters

• Consists of interconnected computational devices
(neurons – inspired by biology)

Input

Network model

Process

Output

Deep Learning

• From 1 layer with few neurons to multiple layers with
millions/billions of neurons

22 layers

15.3% error rate, 2012

6.67%, 2014

7 layers

1 (hidden) layer

Handwriting Recognition

Image / Object Recognition

ImageNet Competition

www.gatorvision.org

http://www.gatorvision.org/

Deep Learning in HEP

• 5-layer neural network with 300 hidden units in each layer with 2.6
million training examples
• 8% improvement over best current approaches

“Searching for Exotic Particles in High-Energy Physics with Deep Learning”. P. Baldi, [2014] et al.

Scholarly work on Deep Learning in HEP

• Jet images and deep learning: https://arxiv.org/abs/1511.05190

• Jet substructure and deep learning: http://inspirehep.net/record/1437937/

• Parton shower uncertainties and jet substructure: http://inspirehep.net/record/1485081?ln=en

• Deep learning for ttH searches http://inspirehep.net/record/1491175?ln=en

• NOVa http://inspirehep.net/record/1444342

• Daya Bay https://arxiv.org/abs/1601.07621

• NEXT: http://inspirehep.net/record/1487439?ln=en

• Microboone: http://inspirehep.net/record/1498561?ln=en

https://arxiv.org/abs/1511.05190
http://inspirehep.net/record/1437937/
http://inspirehep.net/record/1485081?ln=en
http://inspirehep.net/record/1491175?ln=en
http://inspirehep.net/record/1444342
https://arxiv.org/abs/1601.07621
http://inspirehep.net/record/1487439?ln=en
http://inspirehep.net/record/1498561?ln=en

Intel Data Analytics and Acceleration Library
(DAAL)

• Optimized functions for deep learning and classical machine learning

• Language API for C++, Java and Python for Linux and Windows

• Support data ingress from Hadoop and Spark

• Free and open-source versions available

Intel DAAL

Neural Network

Layer1

Layer2

Layer3

Model

Optimization
algorithm

Topology

• Layer: NN building block

• Model: Set of layers

• Optimization: Objective function /solver

• Topology: NN description

• NN: Topology, model & optimization algorithm

• Tensor: Multidimensional data structure

Common layers Activation Normalization Optimization / Solver

Convolutional Logistic Z-score MSE

Pooling (max, average) Hyperbolic tangent Batch Cross entropy

Fully connected ReLU, pReLU, smooth ReLU Local response Mini batch SGD

Softmax Stochastic LBFGS

Dropout Abs

DAAL API Example

• Layer

• Topology

• Optimization Solver

• Model

services::SharedPtr<optimization_solver::mse::Batch<double> > mseObjectiveFunction(new

optimization_solver::mse::Batch<double>(nVectors));

optimization_solver::sgd::Batch<> sgdAlgorithm(mseObjectiveFunction);

trainingNet.compute();

… … ….

services::SharedPtr<training::Model> tModel = trainingNet.getResult()->get(model)

services::SharedPtr<prediction::Model> pModel = tModel->getPredictionModel();

SharedPtr<layers::fullyconnected::Batch<> > fcLayer1(new fullyconnected::Batch<>(20));

SharedPtr<layers::fullyconnected::Batch<> > fcLayer1(new fullyconnected::Batch<>(20));

Collection<LayerDescriptor> configuration;

configuration.push_back(LayerDescriptor(0, fcLayer1, NextLayers(1)));

Experimental Setup with DAAL

D. Ojika et. al P. Baldi, et. al

Platform Xeon Phi (KNL) Tesla 2070 (GPU)

Host Self-hosted (self-boot node) Xeon CPU

Memory 64 GB (+ 2GB MCDRAM*) 64 GB

Library MKL CUDA + Pylearn2
Framework DAAL Theano

Dataset: Higgs 10.5M training; 500K validation 2.6M training; 500K validation

*MCDRAM (a high-bandwidth memory) could provide additional performance benefits when acting in cache mode.

• Benchmark also to be performed against latest release of ROOT, for both single-
node and multi-node configurations

Towards H/W implementation

Neural network
topology

Model exploration GOAL

OpenCL-based DL Implementation

 Micro-benchmarking

 Global Memory Bandwidth

 Memory Latency

 Latency Per Operation

 Local Memory Bandwidth

 Kernel Implementation

 Matrix-Multiplication

 2-D Convolution

 2-D FFT

All possibilities of cross-product of performance metrics with bandwidth required
{Glops/s, … } x {Cache, DRAM, PCIe, Network }  Micro-benchmarks

Evaluation Metrics

 Functional portability
 Performance portability
 Normalized performance

 Improvement over native lang.  FPGA resource utilization

Devices under Study
Device OpenCL Device Type

Intel Xeon Phi Accelerator

Altera Stratix-5 Accelerator

Intel Xeon E5-2620 (Host) Multicore CPU

Kernel Domain

2-D Convolution Time

2-D FFT Frequency

Matrix-Multiplication Frequency

Table 4: Kernel set used in Edge detection application

Table 1: List of OpenCL devices evaluated

Xeon Phi Xeon E-5

Generic

Type Accelerator CPU

Clock (GHZ) 1052 2000

Compute Units 236 12

Max Workgroup Size 8192 8192

Memory Alignment Size 1024 1024

Image Support No Yes

SIMD

Vector Engine Width (Int) 4 16

Vector Engine Width (Float) 8 16

Vector Engine Width (Double) 4 8

Memory

Global Memory Cache Line Size (B) 64 64

Global Memory Cache Size (KB) 256 256

Global Memory Size (GB) 5.64 31.33

Constant Memory Size (KB) 128 128

Local Memory Size (KB) 32 32

Xeon Phi Stratix-5

Memory Type GDDR5 GDDR3

Memory Interconnect Ring Bus Proprietary

Memory Channels 16 2

Memory Capacity (GB) 8 8

Peak Memory B/W (GB/s) 320 10

SIMD (4-byte wide per lane) 16 4

PCI 2.0 x16 lanes 3.0 x8 lanes

Bus Bandwidth (GB/s) 8 7.7

*Table 3: info. as returned by OpenCL API function calls.

Table 2: Architectural differences between two accelerators

Extensive memory
subsystem

Susceptible to vectorization, but
limited by PCI memory B/W

Intel Xeon Phi is the Knights Corner (KNC) edition. Work in progress to port code to KNL;
As well as migrate code from Statix-5 to Arria-10 / Stratix-10

Table 3: Architectural differences between an accelerator and a CPU

OpenCL Memory Model

HOST

Global Memory Bandwidth

0

1000

2000

3000

4000

5000

6000

7000

Device --> Device Host --> Device Device --> Host

Buffer Bandwidth

Xeon Phi Stratix-5 Xeon E-5

Stratix-5

KNC

Device --> Device Host --> Device Device --> Host

Xeon Phi 6336.63 3678.16 4712.81

Stratix-5 922.46 1382.29 2965.71

Xeon E-5 4456.82 3990.02 4712.81

Highest overall B/W for non-PCI transfers

Low B/W due to limited memory
controllers (2 channels)

Device-Host transfer
asynchronously
faster than Host-
Device transfers

58%

Achieved global memory bandwidth in MB/s

Memory Latency

Memory Layer Data size

Global 32 MB

Constant 128 KB

Local 16KB/ 32 KB

Benchmark parameters

Certain kinds of OpenCL benchmarking not feasible on FPGA. Xeon E-5 used as baseline.

Global Constant LocalLegend:

Not susceptible
to sequential
data access

Improved memory
access as a result of
cache-optimized
data layout

Non-bursty data
access overhead
to global memory
result in increased
latency

Memory Latency per Operation

Certain kinds of OpenCL benchmarking not feasible on FPGA. Xeon E-5 used as baseline.

Minimal latency for cache-
optimized data

ns

Very high penalty
per thread due to
high data access
overhead

ns

- Xeon Phi limited by memory B/W.
- Highest penalty for access to

global/constant memory.
- Thread overhead hurts performance.

Local Memory Bandwidth

AsArgument: host buffer passed to kernel as argument

InKernel: buffer declared within kernel
Total local memory bandwidth of device is obtained by the

multiplying streaming bandwidth of compute unit by

number of compute units on device.

Local buffer declaration within
kernel yields much better
performance due to improved
local memory access by threads
in same work-group

Matrix-Multiplication

Fully-utilized 8-wide SIMD (SP)
*Optimized for FP.

Better
performance
compared to naïve
(native mode)

*Naïve: OpenMP with no compiler-enabled vectorization efforts

Average of 40% and 60% normalized performance
for Stratix-5 and Xeon Phi respectively

Minimal OpenCL
overhead
observed for
smaller data size

2D FFT

2D FFT = 2 x FFT, Dot-Product Matrix-Multiply, Inverse FFT

Stratix-5 (OpenCL)

Matrix Size

Exec.

Time (ms) Single-Precision Performance (GFLOPS)

1024x1024 2.44 42.9749

Resource
Utilization

Offline compilation: ~ 2 hours

2D Convolution

OpenCL implicitly-vectorized code
achieves better performance than native
code

Unlike OpenCL code, native
OpenMP code requires extra-
effort to achieve a close
performance

Raw speedup of 4X

Speedup of 3X (with data overhead)

Comm. Out (data out) and Comm. In (data in) are asynchronous in data transfer speed. Latter is faster.

Leftover: Useable execution period – used for data transfer

Data Transfer (with 2-D Convolution)
Transfer size = Image Buffer + Filter Buffer

Image Buffer: 1024 x 1024 x 32 bits

Filter Buffer: 17 x 17 x 32 bits
*32-bit integer or float

Pinned buffer (together with implicit
data transfer) up to 100X faster with
DMA enabled

Explicit data transfer time grows
linearly with increasing data size

OpenCL Initialization Overhead

OpenCL Setup Overhead (ms) Kernel Setup Overhead (ms) Total Overhead (ms)

Xeon Phi 1240 220 1460

Stratix-5 1250 230 1480

Xeon E-5 190 30 220

Both accelerators (with Intel OpenCL
SDK and Altera OpenCL SDK
respectively) share similar OpenCL
initialization overhead*

Minimal OpenCL overhead with
CPU used as OpenCL device

*SInitialization overhead = OpenCL Setup Time + Kernel Setup Time

Summary (DL Layers)
1. From software

DAAL : Improve / replicate accuracy of state of the art

(MKL, transparently)

KNL : Benchmark KNL against serial, existing; OpenCL benchmarks

2. To hardware:

Simplified-Framework

MKL-DNN / OpenCL

Xeon+FPGA, SmartMemory : OpenCL BSP; OpenCL benchmarks

3. User App: Supplemental / Demo with image

classification on DL-SDK

--

DL-SDK, ROOT

--

Caffe

--

MKL

--

CPU

--

ROOT integration:
:https://indico.cern.ch/event/505613/contributions/2228344/attachments/1347106/2041567/oral-CHEP16-

SergeiVGleyzer.pdf

https://indico.cern.ch/event/505613/contributions/2228344/attachments/1347106/2041567/oral-CHEP16-SergeiVGleyzer.pdf

Next Quarter and Meeting…

• KNL results

• R&D with SmartMemory (FPGA-based accelerator)

BACKUP

