
Simplified Deep Learning Framework 
with DAAL and OpenCL: 

towards Hardware Applications
David Ojika

PhD Candidate, University of Florida; Intel Fellow

IML LHC Meeting Nov 2016



Outline 

• General overview of deep learning 

• Current application of ML in physics
• Deep learning, ROOT

• Intel DAAL
• Overview 

• DL with DAAL for Higgs/background classification 
• Setup 

• Towards HW implementation 
• HPC with OpenCL
• Benchmarking 

• Deep Learning SDK Demo



Introduction to Neural Networks

• Neural Network 
• Data processing system to approximate functions 

of large number of parameters

• Consists of interconnected computational devices 
(neurons – inspired by biology) 

Input

Network model

Process

Output



Deep Learning 

• From 1 layer with few neurons to multiple layers with 
millions/billions of neurons

22 layers

15.3% error rate, 2012

6.67%, 2014

7 layers

1 (hidden) layer



Handwriting Recognition 



Image / Object Recognition 



ImageNet Competition 

www.gatorvision.org

http://www.gatorvision.org/


Deep Learning in HEP 

• 5-layer neural network with 300 hidden units in each layer with 2.6 
million training examples
• 8% improvement over best current approaches

“Searching for Exotic Particles in High-Energy Physics with Deep Learning”. P. Baldi, [2014] et al.



Scholarly work on Deep Learning in HEP

• Jet images and deep learning: https://arxiv.org/abs/1511.05190

• Jet substructure and deep learning: http://inspirehep.net/record/1437937/

• Parton shower uncertainties and jet substructure: http://inspirehep.net/record/1485081?ln=en

• Deep learning for ttH searches http://inspirehep.net/record/1491175?ln=en

• NOVa http://inspirehep.net/record/1444342

• Daya Bay https://arxiv.org/abs/1601.07621

• NEXT: http://inspirehep.net/record/1487439?ln=en

• Microboone: http://inspirehep.net/record/1498561?ln=en

https://arxiv.org/abs/1511.05190
http://inspirehep.net/record/1437937/
http://inspirehep.net/record/1485081?ln=en
http://inspirehep.net/record/1491175?ln=en
http://inspirehep.net/record/1444342
https://arxiv.org/abs/1601.07621
http://inspirehep.net/record/1487439?ln=en
http://inspirehep.net/record/1498561?ln=en


Intel Data Analytics and Acceleration Library 
(DAAL)

• Optimized functions for deep learning and classical machine learning

• Language API for C++, Java and Python for Linux and Windows  

• Support data ingress from Hadoop and Spark

• Free and open-source versions available  



Intel DAAL 

Neural Network

Layer1

Layer2

Layer3

Model

Optimization 
algorithm

Topology

• Layer: NN building block 

• Model: Set of layers 

• Optimization: Objective function /solver 

• Topology: NN description 

• NN: Topology, model & optimization algorithm

• Tensor: Multidimensional data structure 

Common layers Activation Normalization Optimization / Solver

Convolutional Logistic Z-score MSE 

Pooling (max, average) Hyperbolic tangent Batch Cross entropy 

Fully connected ReLU, pReLU, smooth ReLU Local response Mini batch SGD

Softmax Stochastic LBFGS

Dropout Abs



DAAL API Example

• Layer 

• Topology 

• Optimization Solver

• Model

services::SharedPtr<optimization_solver::mse::Batch<double> > mseObjectiveFunction(new 

optimization_solver::mse::Batch<double>(nVectors));

optimization_solver::sgd::Batch<> sgdAlgorithm(mseObjectiveFunction);

trainingNet.compute();

… … ….

services::SharedPtr<training::Model> tModel = trainingNet.getResult()->get(model)

services::SharedPtr<prediction::Model> pModel = tModel->getPredictionModel();

SharedPtr<layers::fullyconnected::Batch<> > fcLayer1(new fullyconnected::Batch<>(20));

SharedPtr<layers::fullyconnected::Batch<> > fcLayer1(new fullyconnected::Batch<>(20));

Collection<LayerDescriptor> configuration;

configuration.push_back(LayerDescriptor(0, fcLayer1, NextLayers(1)));



Experimental Setup with DAAL

D. Ojika et. al P. Baldi, et. al

Platform Xeon Phi (KNL) Tesla 2070 (GPU)

Host Self-hosted (self-boot node) Xeon CPU

Memory 64 GB (+ 2GB MCDRAM*) 64 GB

Library MKL CUDA + Pylearn2
Framework DAAL Theano

Dataset: Higgs 10.5M training; 500K validation 2.6M training; 500K validation

*MCDRAM (a high-bandwidth memory) could provide additional performance benefits when acting in cache mode. 

• Benchmark also to be performed against latest release of ROOT, for both single-
node and multi-node configurations 



Towards H/W implementation 

Neural network 
topology

Model exploration GOAL



OpenCL-based DL Implementation  

 Micro-benchmarking

 Global Memory Bandwidth

 Memory Latency

 Latency Per Operation

 Local Memory Bandwidth

 Kernel Implementation 

 Matrix-Multiplication

 2-D Convolution

 2-D FFT

All possibilities of cross-product of performance metrics with bandwidth required
{Glops/s, … } x {Cache, DRAM, PCIe, Network }    Micro-benchmarks



Evaluation Metrics 

 Functional portability
 Performance portability
 Normalized performance

 Improvement over native lang.  FPGA resource utilization



Devices under Study 
Device OpenCL Device Type

Intel Xeon Phi Accelerator

Altera Stratix-5 Accelerator

Intel Xeon E5-2620 (Host) Multicore CPU

Kernel Domain

2-D Convolution Time

2-D FFT Frequency

Matrix-Multiplication Frequency

Table 4: Kernel set used in Edge detection application

Table 1: List of OpenCL devices evaluated

Xeon Phi Xeon E-5

Generic

Type Accelerator CPU

Clock (GHZ) 1052 2000

Compute Units 236 12

Max Workgroup Size 8192 8192

Memory Alignment Size 1024 1024

Image Support No Yes

SIMD

Vector Engine Width (Int) 4 16

Vector Engine Width (Float) 8 16

Vector Engine Width (Double) 4 8

Memory 

Global Memory Cache Line Size (B) 64 64

Global Memory Cache Size (KB) 256 256

Global Memory Size (GB) 5.64 31.33

Constant Memory Size (KB) 128 128

Local Memory Size (KB) 32 32

Xeon Phi Stratix-5

Memory Type GDDR5 GDDR3

Memory Interconnect Ring Bus Proprietary

Memory Channels 16 2

Memory Capacity (GB) 8 8

Peak Memory B/W (GB/s) 320 10

SIMD (4-byte wide per lane) 16 4

PCI 2.0 x16 lanes 3.0 x8 lanes

Bus Bandwidth (GB/s) 8 7.7

*Table 3: info. as returned by OpenCL API function calls.

Table 2: Architectural differences between two accelerators

Extensive memory 
subsystem

Susceptible to vectorization, but 
limited by PCI memory B/W

Intel Xeon Phi is the Knights Corner (KNC) edition. Work in progress to port code to KNL;
As well as migrate code from Statix-5 to Arria-10 / Stratix-10

Table 3: Architectural differences between an accelerator and a CPU



OpenCL Memory Model

HOST



Global Memory Bandwidth
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Device --> Device Host --> Device Device --> Host

Buffer Bandwidth

Xeon Phi Stratix-5 Xeon E-5

Stratix-5

KNC

Device --> Device Host --> Device Device --> Host

Xeon Phi 6336.63 3678.16 4712.81

Stratix-5 922.46 1382.29 2965.71

Xeon E-5 4456.82 3990.02 4712.81

Highest overall B/W for non-PCI transfers

Low B/W due to limited memory 
controllers (2 channels)

Device-Host transfer 
asynchronously 
faster than Host-
Device transfers 

58%

Achieved global memory bandwidth in MB/s



Memory Latency 

Memory Layer Data size

Global 32 MB

Constant 128 KB

Local 16KB/ 32 KB

Benchmark parameters

Certain kinds of  OpenCL benchmarking not feasible on FPGA. Xeon E-5 used as baseline.

Global Constant LocalLegend:

Not susceptible 
to sequential 
data access

Improved memory 
access as a result of 
cache-optimized 
data layout

Non-bursty data 
access overhead 
to global memory 
result in increased 
latency 



Memory Latency per Operation

Certain kinds of  OpenCL benchmarking not feasible on FPGA. Xeon E-5 used as baseline.

Minimal latency for cache-
optimized data 

ns

Very high penalty 
per thread due to 
high data access 
overhead

ns

- Xeon Phi limited by memory B/W. 
- Highest penalty for access to 

global/constant memory.
- Thread overhead hurts performance.



Local Memory Bandwidth

AsArgument:    host buffer passed to kernel as argument

InKernel:           buffer declared within kernel
Total local memory bandwidth of device is obtained by the

multiplying streaming bandwidth of compute unit by

number of compute units on device.

Local buffer declaration within 
kernel yields much better 
performance due to improved 
local memory access by threads 
in same work-group



Matrix-Multiplication

Fully-utilized 8-wide SIMD (SP)
*Optimized for FP.

Better 
performance 
compared to naïve 
(native mode) 

*Naïve: OpenMP with no compiler-enabled vectorization efforts

Average of 40% and 60% normalized performance 
for Stratix-5 and Xeon Phi respectively

Minimal OpenCL 
overhead 
observed for 
smaller data size



2D FFT

2D FFT = 2 x FFT, Dot-Product Matrix-Multiply, Inverse FFT 

Stratix-5 (OpenCL)

Matrix Size

Exec.

Time (ms) Single-Precision Performance (GFLOPS)

1024x1024 2.44 42.9749

Resource
Utilization

Offline compilation: ~ 2 hours



2D Convolution 

OpenCL implicitly-vectorized code 
achieves better performance than native 
code

Unlike OpenCL code, native 
OpenMP code requires extra-
effort to achieve a close 
performance

Raw speedup of 4X

Speedup of 3X (with data overhead)

Comm. Out (data out) and Comm. In (data in)  are asynchronous in data transfer speed. Latter is faster. 

Leftover: Useable execution period – used for data transfer



Data Transfer (with 2-D Convolution)
Transfer size = Image Buffer + Filter Buffer

Image Buffer: 1024 x 1024 x 32 bits

Filter Buffer: 17  x 17 x 32 bits
*32-bit integer or float

Pinned buffer (together with implicit 
data transfer) up to 100X faster with 
DMA enabled

Explicit data transfer time grows 
linearly with increasing data size



OpenCL Initialization Overhead

OpenCL Setup Overhead (ms) Kernel Setup Overhead (ms) Total Overhead (ms)

Xeon Phi 1240 220 1460

Stratix-5 1250 230 1480

Xeon E-5 190 30 220

Both accelerators (with Intel OpenCL 
SDK and Altera OpenCL SDK 
respectively)  share similar OpenCL 
initialization overhead* 

Minimal OpenCL overhead with 
CPU used as OpenCL device

*SInitialization overhead = OpenCL Setup Time + Kernel Setup Time



Summary (DL Layers)
1. From software

-------------------------------------------------------------------------------------------

DAAL :  Improve / replicate accuracy of state of the art 

-------------------------------------------------------------------------------------------

(MKL, transparently)

-------------------------------------------------------------------------------------------

KNL :  Benchmark KNL against serial, existing; OpenCL benchmarks

-------------------------------------------------------------------------------------------

2. To hardware:

-------------------------------------------------------------------------------------------

Simplified-Framework

-------------------------------------------------------------------------------------------

MKL-DNN / OpenCL

-------------------------------------------------------------------------------------------

Xeon+FPGA, SmartMemory : OpenCL BSP; OpenCL benchmarks

-------------------------------------------------------------------------------------------

3. User App: Supplemental / Demo with image 

classification on DL-SDK

--------------------------------------------------------------------------

DL-SDK, ROOT

--------------------------------------------------------------------------

Caffe

--------------------------------------------------------------------------

MKL

--------------------------------------------------------------------------

CPU

--------------------------------------------------------------------------

ROOT integration: 
:https://indico.cern.ch/event/505613/contributions/2228344/attachments/1347106/2041567/oral-CHEP16-

SergeiVGleyzer.pdf

https://indico.cern.ch/event/505613/contributions/2228344/attachments/1347106/2041567/oral-CHEP16-SergeiVGleyzer.pdf


Next Quarter and Meeting…

• KNL results

• R&D with SmartMemory (FPGA-based accelerator)
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