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Comparing theories to data

Many parameters and many constraints → perform a global fit

• Combine constraints in an overall 
likelihood function

• Explore likelihood across entire 
parameter space (smart sampling)

• Interpretation: frequentist/Bayesian

• Project down to 1 or 2 
parameters (profile/marginalise)

4



Anders Kvellestad

1

⇥

[huge number of points required to explore parameter space]
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[long calculation time per observable per parameter point]
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[huge number of points required to explore parameter space]

[large number of observables]
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⇥

[huge number of points required to explore parameter space]

[large number of observables]

⇥
[long calculation time per observable per parameter point]

⇡ - Require smart sampling

Main challenge
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Global fits require lots of work, but we shouldn’t 
have to start from scratch every time…

Need a global fit tool with easily replaceable 

- models 
- theory calculators 

- datasets and observables 
- scanning algorithms
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2.  GAMBIT



G A M B I T

Global fits for dark matter and new physics

G A M B I T

Pat Scott – Dec 1 2016 – AAO Colloquium Searches for dark matter with GAMBITAnders Kvellestad 8



• Code organized in physics modules

• A module is a collection of module functions

• To ensure modularity: No hardcoded function calls between module functions!

• Each function presents GAMBIT with its
• allowed models 
• dependencies 
• capability  

• Dependency resolution at runtime: GAMBIT connects functions as required

• A theory calculation can reside in
• a GAMBIT module function (C++)
• an external library (Fortran, C, C++, Mathematica*, …) loaded at runtime

Main design principle

Anders Kvellestad 9 * Not for first release



Dependency tree

CMSSM_parameters
Type: ModelParameters

Function: primary_parameters
Module: CMSSM

unimproved_MSSM_spectrum
Type: const Spectrum*

Function: get_CMSSM_spectrum
Module: SpecBit

DarkSUSY_PointInit
Type: bool

Function: DarkSUSY_PointInit_MSSM
Module: DarkBit

DarkMatter_ID
Type: std::string

Function: DarkMatter_ID_MSSM30atQ
Module: DarkBit

NUHM1_parameters
Type: ModelParameters

Function: NUHM1_parameters
Module: CMSSM

FeynHiggs_2_11_init
Type: void

Function: FeynHiggs_2_11_init
Module: BackendIniBit

MSSM_spectrum
Type: const Spectrum*

Function: make_MSSM_precision_spectrum
Module: PrecisionBit

MSSM78atQ_parameters
Type: ModelParameters

Function: MSSM78atQ_parameters
Module: MSSM78atMGUT

TH_ProcessCatalog
Type: DarkBit::TH_ProcessCatalog

Function: TH_ProcessCatalog_MSSM
Module: DarkBit

nuyield_ptr
Type: nuyield_info

Function: nuyield_from_DS
Module: DarkBit

SetWIMP_DDCalc0
Type: bool

Function: SetWIMP_DDCalc0
Module: DarkBit

GA_AnnYield
Type: Funk::Funk

Function: GA_AnnYield_General
Module: DarkBit

GA_missingFinalStates
Type: std::vector<std::string>

Function: GA_missingFinalStates
Module: DarkBit

mwimp
Type: double

Function: mwimp_generic
Module: DarkBit

sigmav
Type: double

Function: sigmav_late_universe
Module: DarkBit

NUHM2_parameters
Type: ModelParameters

Function: NUHM2_parameters
Module: NUHM1

FH_HiggsProd
Type: fh_HiggsProd

Function: FH_HiggsProd
Module: ColliderBit

FH_MSSMMasses
Type: fh_MSSMMassObs

Function: FH_MSSMMasses
Module: SpecBit

prec_HiggsMasses
Type: fh_HiggsMassObs

Function: FH_HiggsMasses
Module: SpecBit

Higgs_Couplings
Type: fh_Couplings

Function: FH_Couplings
Module: SpecBit

FH_Precision
Type: fh_PrecisionObs

Function: FH_PrecisionObs
Module: PrecisionBit

HB_ModelParameters
Type: hb_ModelParameters

Function: MSSMHiggs_ModelParameters
Module: ColliderBit

SUSY_HIT_1_5_init
Type: void

Function: SUSY_HIT_1_5_init
Module: BackendIniBit

ALEPH_Selectron_LLike
Type: double

Function: ALEPH_Selectron_Conservative_LLike
Module: ColliderBit

L3_Selectron_LLike
Type: double

Function: L3_Selectron_Conservative_LLike
Module: ColliderBit

ALEPH_Smuon_LLike
Type: double

Function: ALEPH_Smuon_Conservative_LLike
Module: ColliderBit

L3_Smuon_LLike
Type: double

Function: L3_Smuon_Conservative_LLike
Module: ColliderBit

ALEPH_Stau_LLike
Type: double

Function: ALEPH_Stau_Conservative_LLike
Module: ColliderBit

L3_Stau_LLike
Type: double

Function: L3_Stau_Conservative_LLike
Module: ColliderBit

FlavBit_fill
Type: parameters

Function: SI_FlavBit_fill
Module: FlavBit

MicrOmegas_3_5_5_init
Type: void

Function: MicrOmegas_3_5_5_init
Module: BackendIniBit

ColliderOperator
Type: void

Function: operateLHCLoop
Module: ColliderBit

HardScatteringSim
Type: ColliderBit::SpecializablePythia

Function: getPythia
Module: ColliderBit

LEP208_xsec_selselbar
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_selselbar
Module: ColliderBit

LEP208_xsec_serserbar
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_serserbar
Module: ColliderBit

LEP208_xsec_smulsmulbar
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_smulsmulbar
Module: ColliderBit

LEP208_xsec_smursmurbar
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_smursmurbar
Module: ColliderBit

LEP208_xsec_stau1stau1bar
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_stau1stau1bar
Module: ColliderBit

LEP208_xsec_stau2stau2bar
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_stau2stau2bar
Module: ColliderBit

LEP208_xsec_chi00_12
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_chi00_12
Module: ColliderBit

OPAL_Neutralino_Hadronic_LLike
Type: double

Function: OPAL_Neutralino_Hadronic_Conservative_LLike
Module: ColliderBit

LEP208_xsec_chi00_13
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_chi00_13
Module: ColliderBit

LEP208_xsec_chi00_14
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_chi00_14
Module: ColliderBit

LEP208_xsec_chipm_11
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_chipm_11
Module: ColliderBit

OPAL_Chargino_Hadronic_LLike
Type: double

Function: OPAL_Chargino_Hadronic_Conservative_LLike
Module: ColliderBit

OPAL_Chargino_SemiLeptonic_LLike
Type: double

Function: OPAL_Chargino_SemiLeptonic_Conservative_LLike
Module: ColliderBit

OPAL_Chargino_Leptonic_LLike
Type: double

Function: OPAL_Chargino_Leptonic_Conservative_LLike
Module: ColliderBit

OPAL_Chargino_All_Channels_LLike
Type: double

Function: OPAL_Chargino_All_Channels_Conservative_LLike
Module: ColliderBit

LEP208_xsec_chipm_22
Type: triplet<double>

Function: LEP208_SLHA1_convention_xsec_chipm_22
Module: ColliderBit

LEP205_xsec_selselbar
Type: triplet<double>

Function: LEP205_SLHA1_convention_xsec_selselbar
Module: ColliderBit

LEP205_xsec_serserbar
Type: triplet<double>

Function: LEP205_SLHA1_convention_xsec_serserbar
Module: ColliderBit

LEP205_xsec_smulsmulbar
Type: triplet<double>

Function: LEP205_SLHA1_convention_xsec_smulsmulbar
Module: ColliderBit

LEP205_xsec_smursmurbar
Type: triplet<double>

Function: LEP205_SLHA1_convention_xsec_smursmurbar
Module: ColliderBit

LEP205_xsec_stau1stau1bar
Type: triplet<double>

Function: LEP205_SLHA1_convention_xsec_stau1stau1bar
Module: ColliderBit

LEP205_xsec_stau2stau2bar
Type: triplet<double>

Function: LEP205_SLHA1_convention_xsec_stau2stau2bar
Module: ColliderBit

LEP188_xsec_chi00_12
Type: triplet<double>

Function: LEP188_SLHA1_convention_xsec_chi00_12
Module: ColliderBit

L3_Neutralino_All_Channels_LLike
Type: double

Function: L3_Neutralino_All_Channels_Conservative_LLike
Module: ColliderBit

L3_Neutralino_Leptonic_LLike
Type: double

Function: L3_Neutralino_Leptonic_Conservative_LLike
Module: ColliderBit

LEP188_xsec_chi00_13
Type: triplet<double>

Function: LEP188_SLHA1_convention_xsec_chi00_13
Module: ColliderBit

LEP188_xsec_chi00_14
Type: triplet<double>

Function: LEP188_SLHA1_convention_xsec_chi00_14
Module: ColliderBit

LEP188_xsec_chipm_11
Type: triplet<double>

Function: LEP188_SLHA1_convention_xsec_chipm_11
Module: ColliderBit

L3_Chargino_All_Channels_LLike
Type: double

Function: L3_Chargino_All_Channels_Conservative_LLike
Module: ColliderBit

L3_Chargino_Leptonic_LLike
Type: double

Function: L3_Chargino_Leptonic_Conservative_LLike
Module: ColliderBit

LEP188_xsec_chipm_22
Type: triplet<double>

Function: LEP188_SLHA1_convention_xsec_chipm_22
Module: ColliderBit

mw
Type: triplet<double>

Function: mw_from_MSSM_spectrum
Module: PrecisionBit

SLHA1_violation
Type: int

Function: check_first_sec_gen_mixing
Module: DecayBit

SLHA_pseudonyms
Type: DecayBit::mass_es_pseudonyms

Function: get_mass_es_pseudonyms
Module: DecayBit

gluino_decay_rates
Type: DecayTable::Entry
Function: gluino_decays

Module: DecayBit

stop_1_decay_rates
Type: DecayTable::Entry
Function: stop_1_decays

Module: DecayBit

stop_2_decay_rates
Type: DecayTable::Entry
Function: stop_2_decays

Module: DecayBit

sbottom_1_decay_rates
Type: DecayTable::Entry

Function: sbottom_1_decays
Module: DecayBit

sbottom_2_decay_rates
Type: DecayTable::Entry

Function: sbottom_2_decays
Module: DecayBit

sup_l_decay_rates
Type: DecayTable::Entry
Function: sup_l_decays

Module: DecayBit

sup_r_decay_rates
Type: DecayTable::Entry
Function: sup_r_decays

Module: DecayBit

sdown_l_decay_rates
Type: DecayTable::Entry
Function: sdown_l_decays

Module: DecayBit

sdown_r_decay_rates
Type: DecayTable::Entry

Function: sdown_r_decays
Module: DecayBit

scharm_l_decay_rates
Type: DecayTable::Entry

Function: scharm_l_decays
Module: DecayBit

scharm_r_decay_rates
Type: DecayTable::Entry

Function: scharm_r_decays
Module: DecayBit

sstrange_l_decay_rates
Type: DecayTable::Entry

Function: sstrange_l_decays
Module: DecayBit

sstrange_r_decay_rates
Type: DecayTable::Entry

Function: sstrange_r_decays
Module: DecayBit

selectron_l_decay_rates
Type: DecayTable::Entry

Function: selectron_l_decays
Module: DecayBit

selectron_r_decay_rates
Type: DecayTable::Entry

Function: selectron_r_decays
Module: DecayBit

smuon_l_decay_rates
Type: DecayTable::Entry

Function: smuon_l_decays
Module: DecayBit

smuon_r_decay_rates
Type: DecayTable::Entry

Function: smuon_r_decays
Module: DecayBit

stau_1_decay_rates
Type: DecayTable::Entry
Function: stau_1_decays

Module: DecayBit

stau_2_decay_rates
Type: DecayTable::Entry
Function: stau_2_decays

Module: DecayBit

snu_electronl_decay_rates
Type: DecayTable::Entry

Function: snu_electronl_decays
Module: DecayBit

snu_muonl_decay_rates
Type: DecayTable::Entry

Function: snu_muonl_decays
Module: DecayBit

snu_taul_decay_rates
Type: DecayTable::Entry
Function: snu_taul_decays

Module: DecayBit

charginoplus_1_decay_rates
Type: DecayTable::Entry

Function: charginoplus_1_decays
Module: DecayBit

charginoplus_2_decay_rates
Type: DecayTable::Entry

Function: charginoplus_2_decays
Module: DecayBit

neutralino_1_decay_rates
Type: DecayTable::Entry

Function: neutralino_1_decays
Module: DecayBit

neutralino_2_decay_rates
Type: DecayTable::Entry

Function: neutralino_2_decays
Module: DecayBit

neutralino_3_decay_rates
Type: DecayTable::Entry

Function: neutralino_3_decays
Module: DecayBit

neutralino_4_decay_rates
Type: DecayTable::Entry

Function: neutralino_4_decays
Module: DecayBit

stopbar_1_decay_rates
Type: DecayTable::Entry

Function: stopbar_1_decays
Module: DecayBit

stopbar_2_decay_rates
Type: DecayTable::Entry

Function: stopbar_2_decays
Module: DecayBit

sbottombar_1_decay_rates
Type: DecayTable::Entry

Function: sbottombar_1_decays
Module: DecayBit

sbottombar_2_decay_rates
Type: DecayTable::Entry

Function: sbottombar_2_decays
Module: DecayBit

supbar_l_decay_rates
Type: DecayTable::Entry
Function: supbar_l_decays

Module: DecayBit

supbar_r_decay_rates
Type: DecayTable::Entry

Function: supbar_r_decays
Module: DecayBit

sdownbar_l_decay_rates
Type: DecayTable::Entry

Function: sdownbar_l_decays
Module: DecayBit

sdownbar_r_decay_rates
Type: DecayTable::Entry

Function: sdownbar_r_decays
Module: DecayBit

scharmbar_l_decay_rates
Type: DecayTable::Entry

Function: scharmbar_l_decays
Module: DecayBit

scharmbar_r_decay_rates
Type: DecayTable::Entry

Function: scharmbar_r_decays
Module: DecayBit

sstrangebar_l_decay_rates
Type: DecayTable::Entry

Function: sstrangebar_l_decays
Module: DecayBit

sstrangebar_r_decay_rates
Type: DecayTable::Entry

Function: sstrangebar_r_decays
Module: DecayBit

selectronbar_l_decay_rates
Type: DecayTable::Entry

Function: selectronbar_l_decays
Module: DecayBit

selectronbar_r_decay_rates
Type: DecayTable::Entry

Function: selectronbar_r_decays
Module: DecayBit

smuonbar_l_decay_rates
Type: DecayTable::Entry

Function: smuonbar_l_decays
Module: DecayBit

smuonbar_r_decay_rates
Type: DecayTable::Entry

Function: smuonbar_r_decays
Module: DecayBit

staubar_1_decay_rates
Type: DecayTable::Entry

Function: staubar_1_decays
Module: DecayBit

staubar_2_decay_rates
Type: DecayTable::Entry

Function: staubar_2_decays
Module: DecayBit

snubar_electronl_decay_rates
Type: DecayTable::Entry

Function: snubar_electronl_decays
Module: DecayBit

snubar_muonl_decay_rates
Type: DecayTable::Entry

Function: snubar_muonl_decays
Module: DecayBit

snubar_taul_decay_rates
Type: DecayTable::Entry

Function: snubar_taul_decays
Module: DecayBit

charginominus_1_decay_rates
Type: DecayTable::Entry

Function: charginominus_1_decays
Module: DecayBit

charginominus_2_decay_rates
Type: DecayTable::Entry

Function: charginominus_2_decays
Module: DecayBit

t_decay_rates
Type: DecayTable::Entry
Function: FH_t_decays

Module: DecayBit

Higgs_decay_rates
Type: DecayTable::Entry

Function: FH_MSSM_h0_1_decays
Module: DecayBit

h0_2_decay_rates
Type: DecayTable::Entry

Function: FH_h0_2_decays
Module: DecayBit

A0_decay_rates
Type: DecayTable::Entry
Function: FH_A0_decays

Module: DecayBit

Hplus_decay_rates
Type: DecayTable::Entry

Function: FH_Hplus_decays
Module: DecayBit

SuperIso_3_4_init
Type: void

Function: SuperIso_3_4_init
Module: BackendIniBit

Hminus_decay_rates
Type: DecayTable::Entry
Function: Hminus_decays

Module: DecayBit

cascadeMC_Histograms
Type: DarkBit::simpleHistContainter
Function: cascadeMC_Histograms

Module: DarkBit

cascadeMC_DecayTable
Type: DarkBit::DecayChain::DecayTable

Function: cascadeMC_DecayTable
Module: DarkBit

cascadeMC_LoopManagement
Type: void

Function: cascadeMC_LoopManager
Module: DarkBit

IC79WH_data
Type: nudata

Function: IC79WH_full
Module: DarkBit

IC79WL_data
Type: nudata

Function: IC79WL_full
Module: DarkBit

IC79SL_data
Type: nudata

Function: IC79SL_full
Module: DarkBit

CalcRates_XENON100_2012_DDCalc0
Type: bool

Function: CalcRates_XENON100_2012_DDCalc0
Module: DarkBit

CalcRates_LUX_2013_DDCalc0
Type: bool

Function: CalcRates_LUX_2013_DDCalc0
Module: DarkBit

lnL_FermiLATdwarfs
Type: double

Function: lnL_FermiLATdwarfs_gamLike
Module: DarkBit

cascadeMC_gammaSpectra
Type: DarkBit::stringFunkMap

Function: cascadeMC_gammaSpectra
Module: DarkBit

cascadeMC_InitialState
Type: std::string

Function: cascadeMC_InitialState
Module: DarkBit

sigma_SI_p
Type: double

Function: sigma_SI_p_simple
Module: DarkBit

sigma_SI_n
Type: double

Function: sigma_SI_n_simple
Module: DarkBit

sigma_SD_p
Type: double

Function: sigma_SD_p_simple
Module: DarkBit

sigma_SD_n
Type: double

Function: sigma_SD_n_simple
Module: DarkBit

capture_rate_Sun
Type: double

Function: capture_rate_Sun_constant_xsec
Module: DarkBit

equilibration_time_Sun
Type: double

Function: equilibration_time_Sun
Module: DarkBit

MSSM30atMGUT_parameters
Type: ModelParameters

Function: MSSM30atMGUT_parameters
Module: NUHM2

deltarho
Type: triplet<double>

Function: FH_precision_deltarho
Module: PrecisionBit

prec_mw
Type: triplet<double>

Function: FH_precision_mw
Module: PrecisionBit

prec_sinW2_eff
Type: triplet<double>

Function: FH_precision_sinW2
Module: PrecisionBit

HB_LEP_lnL
Type: double

Function: HB_LEP_lnL
Module: ColliderBit

HS_LHC_lnL
Type: double

Function: HS_LHC_lnL
Module: ColliderBit

Bsmumu_untag
Type: double

Function: SI_Bsmumu_untag
Module: FlavBit

Bdmumu
Type: double

Function: SI_Bdmumu
Module: FlavBit

Btaunu
Type: double

Function: SI_Btaunu
Module: FlavBit

BDtaunu
Type: double

Function: SI_BDtaunu
Module: FlavBit

BDtaunu_BDenu
Type: double

Function: SI_BDtaunu_BDenu
Module: FlavBit

Kmunu_pimunu
Type: double

Function: SI_Kmunu_pimunu
Module: FlavBit

Dstaunu
Type: double

Function: SI_Dstaunu
Module: FlavBit

Dsmunu
Type: double

Function: SI_Dsmunu
Module: FlavBit

Dmunu
Type: double

Function: SI_Dmunu
Module: FlavBit

BRBKstarmumu_11_25
Type: Flav_KstarMuMu_obs

Function: SI_BRBKstarmumu_11_25
Module: FlavBit

BRBKstarmumu_25_40
Type: Flav_KstarMuMu_obs

Function: SI_BRBKstarmumu_25_40
Module: FlavBit

BRBKstarmumu_40_60
Type: Flav_KstarMuMu_obs

Function: SI_BRBKstarmumu_40_60
Module: FlavBit

BRBKstarmumu_60_80
Type: Flav_KstarMuMu_obs

Function: SI_BRBKstarmumu_60_80
Module: FlavBit

BRBKstarmumu_15_17
Type: Flav_KstarMuMu_obs

Function: SI_BRBKstarmumu_15_17
Module: FlavBit

BRBKstarmumu_17_19
Type: Flav_KstarMuMu_obs

Function: SI_BRBKstarmumu_17_19
Module: FlavBit

b2sll_M
Type: FlavBit::Flav_measurement_assym

Function: b2sll_measurements
Module: FlavBit

b2sll_LL
Type: double

Function: b2sll_likelihood
Module: FlavBit

b2ll_LL
Type: double

Function: b2ll_likelihood
Module: FlavBit

b2ll_M
Type: FlavBit::Flav_measurement_assym

Function: b2ll_measurements
Module: FlavBit

SL_M
Type: FlavBit::Flav_measurement_assym

Function: SL_measurements
Module: FlavBit

SL_LL
Type: double

Function: SL_likelihood
Module: FlavBit

DD_couplings
Type: DarkBit::DD_couplings

Function: DD_couplings_MicrOmegas
Module: DarkBit

RD_oh2
Type: double

Function: RD_oh2_MicrOmegas
Module: DarkBit

HardScatteringEvent
Type: Pythia8::Event

Function: generatePythia8Event
Module: ColliderBit

ConvertedScatteringEvent
Type: HEPUtils::Event

Function: convertPythia8ParticleEvent
Module: ColliderBit

SimpleSmearingSim
Type: ColliderBit::BuckFastSmear

Function: getBuckFast
Module: ColliderBit

AnalysisContainer
Type: HEPUtilsAnalysisContainer

Function: getAnalysisContainer
Module: ColliderBit

ReconstructedEvent
Type: HEPUtils::Event

Function: reconstructBuckFastEvent
Module: ColliderBit

AnalysisNumbers
Type: ColliderLogLikes
Function: runAnalyses
Module: ColliderBit

lnL_W_mass
Type: double

Function: lnL_W_mass_chi2
Module: PrecisionBit

decay_rates
Type: DecayTable

Function: all_decays
Module: DecayBit

tbar_decay_rates
Type: DecayTable::Entry

Function: tbar_decays
Module: DecayBit

cascadeMC_ChainEvent
Type: DarkBit::DecayChain::ChainContainer

Function: cascadeMC_GenerateChain
Module: DarkBit

cascadeMC_EventCount
Type: DarkBit::stringIntMap

Function: cascadeMC_EventCount
Module: DarkBit

IC79WH_loglike
Type: double

Function: IC79WH_loglike
Module: DarkBit

IC79WH_bgloglike
Type: double

Function: IC79WH_bgloglike
Module: DarkBit

IC79WL_loglike
Type: double

Function: IC79WL_loglike
Module: DarkBit

IC79WL_bgloglike
Type: double

Function: IC79WL_bgloglike
Module: DarkBit

IC79SL_loglike
Type: double

Function: IC79SL_loglike
Module: DarkBit

IC79SL_bgloglike
Type: double

Function: IC79SL_bgloglike
Module: DarkBit

lnL_XENON100_2012
Type: double

Function: XENON100_2012_LogLikelihood_DDCalc0
Module: DarkBit

lnL_LUX_2013
Type: double

Function: LUX_2013_LogLikelihood_DDCalc0
Module: DarkBit

annihilation_rate_Sun
Type: double

Function: annihilation_rate_Sun
Module: DarkBit

MSSM78atMGUT_parameters
Type: ModelParameters

Function: MSSM78atMGUT_parameters
Module: MSSM30atMGUT

lnL_deltarho
Type: double

Function: lnL_deltarho_chi2
Module: PrecisionBit

lnL_sinW2_eff
Type: double

Function: lnL_sinW2_eff_chi2
Module: PrecisionBit

RD_fraction
Type: double

Function: RD_fraction_from_oh2
Module: DarkBit

lnL_oh2
Type: double

Function: lnL_oh2_Simple
Module: DarkBit

LHC_Combined_LogLike
Type: double

Function: calc_LHC_LogLike
Module: ColliderBit

IC79_loglike
Type: double

Function: IC79_loglike
Module: DarkBit

DDCalc0_0_0_init
Type: void

Function: DDCalc0_0_0_init
Module: BackendIniBit

StandardModel_SLHA2_parameters
Type: ModelParameters

Function: primary_parameters
Module: StandardModel_SLHA2

SMINPUTS
Type: SMInputs

Function: get_SMINPUTS
Module: SpecBit

nuclear_params_sigma0_sigmal_parameters
Type: ModelParameters

Function: nuclear_params_sigma0_sigmal_parameters
Module: nuclear_params_sigmas_sigmal

lnL_t_mass
Type: double

Function: lnL_t_mass_chi2
Module: PrecisionBit

lnL_mbmb
Type: double

Function: lnL_mbmb_chi2
Module: PrecisionBit

lnL_alpha_em
Type: double

Function: lnL_alpha_em_chi2
Module: PrecisionBit

lnL_alpha_s
Type: double

Function: lnL_alpha_s_chi2
Module: PrecisionBit

lnL_light_quark_masses
Type: double

Function: lnL_light_quark_masses_chi2
Module: PrecisionBit

nuclear_params_fnq_parameters
Type: ModelParameters

Function: nuclear_params_fnq_parameters
Module: nuclear_params_sigma0_sigmal

nuclear_params_sigmas_sigmal_parameters
Type: ModelParameters

Function: primary_parameters
Module: nuclear_params_sigmas_sigmal

lnL_SI_nuclear_parameters
Type: double

Function: lnL_sigmas_sigmal
Module: DarkBit

HiggsBounds_4_2_1_init
Type: void

Function: HiggsBounds_4_2_1_init
Module: BackendIniBit

nulike_1_0_0_init
Type: void

Function: nulike_1_0_0_init
Module: BackendIniBit

Pythia_8_209_init
Type: void

Function: Pythia_8_209_init
Module: BackendIniBit

DarkSUSY_5_1_1_init
Type: void

Function: DarkSUSY_5_1_1_init
Module: BackendIniBit

SimYieldTable
Type: DarkBit::SimYieldTable

Function: SimYieldTable_DarkSUSY
Module: DarkBit

gamLike_1_0_0_init
Type: void

Function: gamLike_1_0_0_init
Module: BackendIniBit

HiggsSignals_1_4_init
Type: void

Function: HiggsSignals_1_4_init
Module: BackendIniBit

cascadeMC_FinalStates
Type: std::vector<std::string>

Function: cascadeMC_FinalStates
Module: DarkBit

Debug_Cap
Type: bool

Function: Debug
Module: FlavBit

Debug_Cap_LL
Type: bool

Function: Debug_LL
Module: FlavBit

W_plus_decay_rates
Type: DecayTable::Entry
Function: W_plus_decays

Module: DecayBit

W_minus_decay_rates
Type: DecayTable::Entry

Function: W_minus_decays
Module: DecayBit

Z_decay_rates
Type: DecayTable::Entry

Function: Z_decays
Module: DecayBit

mu_plus_decay_rates
Type: DecayTable::Entry

Function: mu_plus_decays
Module: DecayBit

mu_minus_decay_rates
Type: DecayTable::Entry

Function: mu_minus_decays
Module: DecayBit

tau_plus_decay_rates
Type: DecayTable::Entry
Function: tau_plus_decays

Module: DecayBit

tau_minus_decay_rates
Type: DecayTable::Entry

Function: tau_minus_decays
Module: DecayBit

pi_0_decay_rates
Type: DecayTable::Entry

Function: pi_0_decays
Module: DecayBit

pi_plus_decay_rates
Type: DecayTable::Entry
Function: pi_plus_decays

Module: DecayBit

pi_minus_decay_rates
Type: DecayTable::Entry

Function: pi_minus_decays
Module: DecayBit

eta_decay_rates
Type: DecayTable::Entry

Function: eta_decays
Module: DecayBit

rho_0_decay_rates
Type: DecayTable::Entry
Function: rho_0_decays

Module: DecayBit

rho_plus_decay_rates
Type: DecayTable::Entry

Function: rho_plus_decays
Module: DecayBit

rho_minus_decay_rates
Type: DecayTable::Entry

Function: rho_minus_decays
Module: DecayBit

omega_decay_rates
Type: DecayTable::Entry
Function: omega_decays

Module: DecayBit

CMSSM
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• ColliderBit: Higgs data, SUSY searches at LHC & LEP

• DarkBit: Relic density, direct detection, indirect detection

• FlavBit: B, D, K decays, angular obs., theory uncertainties, correlations 
(See Nazila and Marcin’s talk yesterday)

• SpecBit: Generic BSM spectrum object. RGE running, masses, mixings, etc  
via interchangeable interface to RGE codes.

• DecayBit: Decay widths and BRs

• PrecisionBit: SM likelihoods (nuisance par.),  EW precision tests, g-2

• ScannerBit: Scanning algorithms (differential evolution, nested sampling,  
MCMC, t-walk, grid scan, "random sampling", …)

• [Your own module here]

GAMBIT modules

Anders Kvellestad 11
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Abstract We describe a new code for the calculation
of high energy collider observables in theories of physics
beyond the Standard Model (BSM). The ColliderBit
code features a generic interface to BSM models, a
unique parallelised Monte Carlo event generation scheme
suitable for large-scale supercomputer applications, and
a number of LHC analyses, covering a reasonable range
of the BSM signatures currently sought by ATLAS and
CMS. ColliderBit also calculates likelihoods for Higgs
sector observables, and LEP searches for BSM particles.
These features are provided by a combination of new
code unique to ColliderBit, and interfaces to existing
state-of-the-art public codes. ColliderBit is at the same
time an important part of the GAMBIT framework for
BSM inference, and a standalone tool for e�ciently
applying collider constraints to theories of new physics.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Physics and implementation . . . . . . . . . . . . . . . . 3

2.1 LHC likelihood calculation . . . . . . . . . . . . . . 3
2.1.1 LHC constraints included in ColliderBit . . 3
2.1.2 Strategy for applying LHC constraints

without model dependence . . . . . . . . . 4
2.1.3 Cross-section calculations . . . . . . . . . . 4
2.1.4 Monte Carlo event generation . . . . . . . . 5
2.1.5 Event record . . . . . . . . . . . . . . . . . 6
2.1.6 Detector simulation . . . . . . . . . . . . . 7

2.1.7 LHC event analysis framework . . . . . . . 8
2.1.8 LHC Statistics Calculations . . . . . . . . . 8
2.1.9 Validation of ColliderBit LHC constraints . 10

2.2 LEP likelihood calculation . . . . . . . . . . . . . . 11
2.3 Higgs likelihood calculation . . . . . . . . . . . . . 13

3 User interface . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 GAMBIT interface . . . . . . . . . . . . . . . . . . 14

3.1.1 LHC simulation capabilities . . . . . . . . . 14
3.1.2 LEP supersymmetry limit capabilities . . . 18
3.1.3 Higgs likelihood capabilities . . . . . . . . . 18

3.2 Standalone interface . . . . . . . . . . . . . . . . . 18
4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 CMSSM example . . . . . . . . . . . . . . . . . . . 20
4.2 Generic Pythia model example . . . . . . . . . . . . 21

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 22
A Quick start guide . . . . . . . . . . . . . . . . . . . . . . 23

A.1 Building and running the standalone example . . . 23
A.2 Running the ColliderBit example in GAMBIT . . . 23

B ColliderBit classes . . . . . . . . . . . . . . . . . . . . . . 23

1 Introduction

Despite decades of collider searches for physics beyond
the Standard Model (BSM), it remains the case that
we lack an unambiguous discovery of such physics. The
many null results from the Large Hadron Collider (LHC)
and other experiments allow us to constrain, to various
degrees, the parameter spaces of many extension of the
Standard Model (SM). These include “bottom-up” ef-
fective theories and simplified models of dark matter,

• Higgs: Connect HiggsBounds and HiggsSignals as backends (more to come later)

• LEP limits (SUSY): Calculate             , check against published cross section limits

• LHC particle searches: Poisson likelihood from "first principles"

• cross section
• MC generation
• detector sim
• event analysis

� ⇥BR
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Fig. 1: Schematic diagram of the ColliderBit processing chain for
LHC likelihoods.

For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].

s = � ⇥ ✏⇥ LCalculating
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LHC likelihoods.

For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].

s = � ⇥ ✏⇥ LCalculating

• Use LO+LL cross-sections from MC 
generator by default

• All that exists for many models

• Behind state-of-the-art for SUSY 
(but gives conservative limits)

• In global fit: skip event generation if 
initial max cross section estimate is 
very small 

• Future: option for user-supplied cross-
sections
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For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].

s = � ⇥ ✏⇥ LCalculating

• Connects Pythia 8 as backend

• Event generation loop parallelised in 
ColliderBit with OpenMP 

• Can generate 104 events in a few 
seconds on 8 CPUs

• Further speed-up by turning off less 
important Pythia options (e.g. MPI)

• Can add matrix elements for new 
models via MadGraph-Pythia interface 
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For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].
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• BuckFast: Our own thread-safe 
detector sim based on four-vector 
smearing

• Run in the parallelised event loop
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For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].
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Fig. 2: Comparisons of ATLAS event observables between the no-detector “truth” configuration, ColliderBit’s BuckFast 4-vector
smearing simulation, and the Delphes fast simulation code, for a CMSSM point near the current ATLAS search limit (see main text).
The ratio plots are computed relative to Delphes, to best evaluate the performance of BuckFast. The major e↵ects of detector simulation
are seen to be due to lepton e�ciencies, with explicit resolution modelling producing relatively minor e↵ects. BuckFast and Delphes
typically agree to within a few percent for leptons, but some larger di↵erences remain for b-jets and missing ET. The latter is currently
unsmeared in BuckFast, but the origin of the deviation at high-Emiss

T is unclear since the reconstructed ATLAS Emiss
T closely matches

the truth value above 70 GeV [61].
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Fig. 2: Comparisons of ATLAS event observables between the no-detector “truth” configuration, ColliderBit’s BuckFast 4-vector
smearing simulation, and the Delphes fast simulation code, for a CMSSM point near the current ATLAS search limit (see main text).
The ratio plots are computed relative to Delphes, to best evaluate the performance of BuckFast. The major e↵ects of detector simulation
are seen to be due to lepton e�ciencies, with explicit resolution modelling producing relatively minor e↵ects. BuckFast and Delphes
typically agree to within a few percent for leptons, but some larger di↵erences remain for b-jets and missing ET. The latter is currently
unsmeared in BuckFast, but the origin of the deviation at high-Emiss

T is unclear since the reconstructed ATLAS Emiss
T closely matches

the truth value above 70 GeV [61].
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Fig. 1: Schematic diagram of the ColliderBit processing chain for
LHC likelihoods.

For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].

s = � ⇥ ✏⇥ LCalculating

• Analysis framework independent of 
MC generator and detector sim

• Uses public HepUtils classes

• Included analyses (8 TeV):
• ATLAS SUSY searches:  

- 0 lep  
- 0-1-2 lep stop  
- b-jet plus MET  
- 2 lep EW 
- 3 lep EW

• CMS multilepton SUSY search
• CMS DM searches: 

- top pair plus MET  
- mono-b 
- mono-jet

• 13 TeV analyses in the pipeline
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LHC likelihoods.

For many models, these are the state-of-the-art. For
models where an NLO (or better) calculation exists,
e.g the MSSM, this is a conservative approximation, as
the k-factors are predominantly greater than one. The
LO+LL MSSM cross-sections are considerably quicker
to evaluate than the full NLO results obtained using
e.g. Prospino [42–44]. A single evaluation of just the
strong production cross-sections for a CMSSM bench-
mark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a
modern processor using Prospino 2.1 (Intel Core i5 at
2.6GHz). This is clearly unusable in a scan where the
evaluation of a single parameter point must be done in
times on the order of a few seconds. Although a fast
interpolation routine with added NLL corrections ex-
ists in NLL-fast [45–49], this interpolation is limited to
models with degenerate squark masses.

With the improvement to NLO+NLL, the error from
the factorisation and renormalisation scales has been
shown to be as low as 10% [46] for a wide range of
processes and masses; however, PDF and ↵s uncertain-
ties must be included in the total error budget. These
increase with the sparticle masses because the PDFs are
most poorly constrained at large scales and at large par-
ton x. As an example, at 8 TeV NLL-fast 2.1 gives errors
of (+24.3%,�22.2%) and (+8.3%,�7.3%), for the PDF
and ↵s, respectively, using the MSTW2008NLO PDF
set [50], with gluino and squark masses set to 1.5 TeV.

Num. cores t (105 events) Speed-up

1 479 sec 1
4 148 sec 3.2
8 121 sec 4.0
16 79 sec 6.1
20 81 sec 5.9

Table 1: Time taken for the ColliderBit LHC likelihood calcula-
tion as a function of the number of cores, for 100,000 SUSY events
at the SPS1a parameter point [53, 54], including all sub-processes.
The processes were run on a single computer node, with ISR, FSR,
and full hadronisation enabled, but multiple parton interactions
and tau decay spin correlations disabled. GAMBIT was compiled
with full optimisation settings (cf. Section 11 of Ref. [1]).

Because 1.5 TeV is at the edge of the LHC reach at that
energy, the total error budget here will not drop much
below 25% even with NLO+NLL cross-sections.3

In light of the above, we take the conservative path
of calculating likelihoods with the LO Pythia 8 cross-
sections for the LHC. Assigning errors to these cross-
sections is rather meaningless, considering the mono-
tonic nature of LO scale-dependence, and the fact that
the LO cross-sections in BSM models are known to al-
most always lie significantly below the NLO and higher
order cross-section, sometimes by as much as a factor
of two.4 The LO cross-sections are hence nearly always
more conservative than the lower edge of the most pes-
simistic NLO uncertainty band due to renormalisation
scale systematics. We have verified that this choice, com-
bined with the approximations used in the event and
detector simulation, results in limits equal to or more
conservative than those in the included ATLAS and
CMS analyses (see Section 2.1.7). In future releases we
will allow the user to supply cross-sections as input to
the event generation, allowing one to calculate them
using any preferred choice of external code (known in
GAMBIT as a “backend”).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an inter-
face to the Pythia 8 [38, 39] event generator, alongside
custom code that parallelises the main event loop of
Pythia using OpenMP.5 This substantially reduces the
runtime, as seen in Table 1.

For the purposes of BSM searches, many time-
consuming generator components also add little to the

3With the CTEQ6.6M PDF set [51], the errors increase to
(+63.1%,�38.5%) and (+15.6%,�10.3%); these uncertainties
will reduce somewhat as PDF fits including higher-x LHC data
become available.
4For a recent thorough exploration of K-factors in the MSSM up
to approximate NNLO+NNLL order see [? ] and Fig. 2 within.
5For an earlier similar approach, see Ref. [52].
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• Poisson distribution, marginalised over 
systematic uncertainty (via nulike) 
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and CMS the jet momentum is smeared by a 3%
Gaussian resolution.

b-jets: Truth-level jet tags are obtained by matching
jets to final b-partons for �R < 0.4; a more robust
approach using final b-hadrons is also available, but
by construction agrees less well with the parton-
based Delphes and LHC Run 1 tagging calibrations.
As for taus, tagging e�ciencies and mistag rates are
applied in each analysis code, to allow the use of
di↵erent tagger configurations in di↵erent analyses.

Missing energy (MET): MET is constructed at gen-
erator level by summing the transverse momenta of
invisible particles within the acceptance of the de-
tector, and all particles outside the acceptance. No
“soft-term” MET smearing is currently applied, since
for events with real hard-process invisible particles
the ATLAS reconstruction of Emiss

T

is within a few
percent of the true value at all scales, and within
1% above 70 GeV [61]. The same approach is taken
to define the “truth MET” in the “no simulation”
mode.

BuckFast is significantly faster than Delphes. One reason
for this is that the operations it performs are computa-
tionally far simpler. The other is that the ROOT frame-
work on which Delphes is based is not thread-safe, so
must be run serially within an OpenMP critical block;
in contrast, BuckFast can be run in parallel along with
our parallelised version of Pythia 8 (cf. Section 2.1.4).

2.1.7 LHC event analysis framework

ColliderBit provides a simple analysis framework, built
on the event record classes described in Sec. 2.1.5.
Each analysis routine is a C++ class derived from the
BaseAnalysis class, which provides the usual interface of
a pre-run init method and an in-run analyze method to
be called on each event. The user can choose which anal-
yses to run in a given scan directly from the GAMBIT
configuration file. Using the generic ColliderBit event
record classes means that the analyses can be automat-
ically run on either unsmeared truth records or ones
to which detector e↵ects (other than jet tagging rates)
have been applied.

The result of an analysis is a set of SignalRegionData
objects. Each of these encodes the predicted event counts
in a particular signal region of the analysis, from both
signal and background processes. The signal numbers are
obtained by normalising the distributions of simulated
events to the integrated luminosity of the original exper-
imental data analysis. The BaseAnalysis class provides
additional methods for statistically combining analyses
(either equivalent or orthogonal), and for specifying the
e↵ective luminosity simulated in the Monte Carlo step.

2.1.8 LHC Statistics Calculations

To determine the basic likelihood of observing n events
in a certain signal region, given a signal prediction s,
we use the marginalised form of Eq. 1 [62–64]. This
allows us to incorporate systematic uncertainties on the
signal prediction (�s) and background estimate (�b) into
the calculation, by marginalising over the probability
distribution of a rescaling parameter ⇠:

L(n|s, b) =
Z 1

0

[⇠(s+ b)]n e�⇠(b+s)

n!
P (⇠)d⇠ . (3)

The probability distribution for ⇠ is peaked at ⇠ = 1,
and has a width characterised by �

2

⇠ = �

2

s + �

2

b . The
user can choose whether to assume a Gaussian form for
this function,

P (⇠|�⇠) =
1p
2⇡�⇠

exp

"
�1

2

✓
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◆
2

#
, (4)

or a log-normal form,

P (⇠|�⇠) =
1p
2⇡�⇠

1

⇠

exp

"
�1

2

✓
ln ⇠

�⇠

◆
2

#
. (5)

The ColliderBit default is to use the log-normal version.
This is slower but more correct, as it does not permit
a finite probability for ⇠ = 0. In the limit of small �⇠,
both likelihoods give extremely similar results. We use
the highly optimised implementations of these functions
contained in nulike [64, 65].

The steps we have described so far allow ColliderBit
to calculate the predicted number of events in any given
signal region, defined by a specific set of observables and
kinematic cuts, and to compute the likelihood for that re-
gion. However, certain ATLAS and CMS analyses make
use of multiple signal regions, allowing analysis cuts to
be optimised according to the specific characteristics of
each model being tested. These signal regions may over-
lap, and so contain events in common. The likelihood
functions from overlapping signal regions are therefore
not independent. Ideally, information would be available
from the experiments about the degree to which this
overlap occurs, which would allow GAMBIT analyses to
include all signal regions and their correlations in the
final likelihood for a given analysis.

As this information is not presently available, Collid-
erBit computes the likelihood for a given analysis on the
basis of the signal region expected to give the strongest
limit. It does this individually for each model, by calcu-
lating the expected number of events for every possible
signal region considered in the the original ATLAS or

• For each analysis: Use likelihood from 
the signal region with the best 
expected sensitivity

• Combined likelihood on assumption 
that the different analyses are 
orthogonal (user’s responsibility!)
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Results: GUT-scale MSSM (NUHM2; preliminary)
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GUT-scale MSSM: NUHM2 (preliminary)
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• Relic density as upper bound
• Mostly chargino co-annihilation and A/H funnel
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mf̃ ,M2, Au, Ad,mHu ,mHd , tan� (+5 nuisance par.)
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• Relic density as upper bound
• Mostly chargino co-annihilation and A/H funnel, some stau co-ann.



Results: Scalar singlet DM (mS, �hS + 13 nuisances)
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Results: Scalar singlet DM (mS, �hS + 13 nuisances)
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…and some ongoing work on other models…



Results: In the works (very preliminary)
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• GAMBIT is a general framework for BSM global fits

• Public code release Jan/Feb 2017 

• 9 papers in preparation: 
  
- 3 physics studies with GAMBIT  
- the main GAMBIT paper 
- 5 module papers (incl. ColliderBit)

• ColliderBit is a fast and model-independent tool for LHC recasting

• We would like to backend your code!

Summary and outlook

Anders Kvellestad 27



Backup slides



Screenshot of config file for SUSY scans

Anders Kvellestad
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G A M B I T

Backends: mix and match

Pat Scott – Dec 1 2016 – AAO Colloquium Searches for dark matter with GAMBIT

Diagnostics on connected backends
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Other features

G A M B I T

Other nice technical features

Easy to add new observables and likelihoods (backup
slides)
User interface: yaml file (backup slides)
Scanners: Nested sampling, differential evolution, MCMC,
genetic algorithm, t-walk. . .
Mixed-mode MPI + openMP parallelisation, mostly
automated! scales to 10k+ cores
diskless generalisation of various Les Houches Accords
BOSS: dynamic loading of C++ classes from backends (!)
all-in or module standalone modes – easily implemented
from single cmake script
automatic getters for obtaining, configuring + compiling
backends1

flexible output streams (ASCII, databases, HDF5, . . . )
more more more. . .

1if a backend won’t compile/crashes/shares your cat pics with the NSA,
blame the authors (not us. . . except where we are the authors. . . )

Pat Scott – Dec 1 2016 – AAO Colloquium Searches for dark matter with GAMBIT slide from Pat Scott
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NormalDist
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G AM B I T

Hierarchical model database
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lim
D!1

V
interesting

V
total

= 0

Finding interesting parameter regions gets harder with 
increasing number of dimensions… 

…

…so simply picking points «at random» will be 
highly inefficient…
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…
p

~x = (x1, x2, . . . , xD)
xi ⇠ U(0, 1)

0 1

(

…and it will mainly explore the boundary of the parameter space!

P (boundary) = 1� P (not boundary) = 1� pD
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from Roberto Trotta

Roberto Trotta 

Marginalization vs profiling (maximising) 

Marginal posterior:

P (�1|D) =
�

L(�1, �2)p(�1, �2)d�2

Profile likelihood: 

L(�1) = max�2L(�1, �2)

θ2

θ1

Best-fit 
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile 
likelihood

Best-fit Posterior 
mean

Marginal posterior

} Volume effect


