An update on GAMBIT Anders Kvellestad, Nordita on behalf of the GAMBIT collaboration CERN, December 13, 2016 # Outline - I. Global fits - 2. GAMBIT - 3. ColliderBit: a GAMBIT module for collider physics - 4. Preliminary GAMBIT results # I. Global fits Many parameters and many constraints \rightarrow perform a global fit Combine constraints in an overall likelihood function - Combine constraints in an overall likelihood function - Explore likelihood across entire parameter space (smart sampling) - Combine constraints in an overall likelihood function - Explore likelihood across entire parameter space (smart sampling) - Interpretation: frequentist/Bayesian - Combine constraints in an overall likelihood function - Explore likelihood across entire parameter space (smart sampling) - Interpretation: frequentist/Bayesian - Project down to 1 or 2 parameters (profile/marginalise) [large number of observables] [long calculation time per observable per parameter point] [huge number of points required to explore parameter space] [large number of observables] - Require many external tools [long calculation time per observable per parameter point] [huge number of points required to explore parameter space] [large number of observables] [long calculation time per observable per parameter point] - E.g. simulating LHC searches [huge number of points required to explore parameter space] [large number of observables] [long calculation time per observable per parameter point] [huge number of points required to explore parameter space] - Require smart sampling Global fits require lots of work, but we shouldn't have to start from scratch every time... Need a global fit tool with easily replaceable - models - theory calculators - datasets and observables - scanning algorithms # 2. GAMBIT #### GAMBIT: The Global And Modular BSM Inference Tool #### gambit.hepforge.org - Fast definition of new datasets and theoretical models - Plug and play scanning, physics and likelihood packages - Extensive model database not just SUSY - Extensive observable/data libraries A. Buckley, P. Jackson, C. Rogan, M. White, LHCb M. Chrząszcz, N. Serra Belle-II F. Bernlochner, P. Jackson Fermi-LAT J. Conrad, J. Edsjö, G. Martinez, P. Scott C. Balázs, T. Bringmann, J. Conrad, M. White HESS J. Conrad IceCube J. Edsjö, P. Scott XENON/DARWIN J. Conrad, R. Trotta Theory P. Athron, C. Balázs, T. Bringmann, P. Athron, C. Balazs, T. Bringmann, J. Cornell, J. Edsjö, B. Farmer, T. Gonzalo, A. Fowlie, J. Harz, S. Hoof, F. Kahlhoefer, A. Krislock, A. Kvellestad, M. Pato, F.N. Mahmoudi, J. McKay, A. Raklev, R. Ruiz, P. Scott, R. Trotta, C. Weniger, M. White, S. Wild - Fast LHC likelihood calculator - Massively parallel - Fully open-source **ATLAS** CTA 31 Members, 9 Experiments, 4 major theory codes, 11 countries ## Main design principle - Code organized in physics modules - A module is a collection of module functions - To ensure modularity: No hardcoded function calls between module functions! - Each function presents GAMBIT with its - allowed models - dependencies - capability - Dependency resolution at runtime: GAMBIT connects functions as required - A theory calculation can reside in - a GAMBIT module function (C++) - an external library (Fortran, C, C++, Mathematica*, ...) loaded at runtime # Dependency tree #### **CMSSM** ### GAMBIT modules - ColliderBit: Higgs data, SUSY searches at LHC & LEP - DarkBit: Relic density, direct detection, indirect detection - FlavBit: B, D, K decays, angular obs., theory uncertainties, correlations (See Nazila and Marcin's talk yesterday) - SpecBit: Generic BSM spectrum object. RGE running, masses, mixings, etc via interchangeable interface to RGE codes. - DecayBit: Decay widths and BRs - PrecisionBit: SM likelihoods (nuisance par.), EW precision tests, g-2 - ScannerBit: Scanning algorithms (differential evolution, nested sampling, MCMC, t-walk, grid scan, "random sampling", ...) - [Your own module here] # 3. ColliderBit # ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods ``` Csaba Balazs^{1,2}, Andy Buckley³, Lars Dal⁴, Ben Farmer⁵, Paul Jackson^{2,6}, Abram Krislock⁴, Anders Kvellestad⁷, Antje Putze⁸, Are Raklev⁴, Christopher Rogan⁹, Aldo Saavedra^{2,10}, Pat Scott¹¹, Christoph Weniger¹², Martin White^{2,6} ``` - Higgs: Connect HiggsBounds and HiggsSignals as backends (more to come later) - LEP limits (SUSY): Calculate $\sigma \times BR$, check against published cross section limits - LHC particle searches: Poisson likelihood from "first principles" - cross section - MC generation - detector sim - event analysis - Use LO+LL cross-sections from MC generator by default - All that exists for many models - Behind state-of-the-art for SUSY (but gives conservative limits) - In global fit: skip event generation if initial max cross section estimate is very small - Future: option for user-supplied crosssections - Connects Pythia 8 as backend - Event generation loop parallelised in ColliderBit with OpenMP - Can generate 10⁴ events in a few seconds on 8 CPUs - Further speed-up by turning off less important Pythia options (e.g. MPI) - Can add matrix elements for new models via MadGraph-Pythia interface - Have interface to DELPHES... - ...but ROOT is not thread-safe - BuckFast: Our own thread-safe detector sim based on four-vector smearing - Run in the parallelised event loop - Good agreement with DELPHES Have interface to DELPHES... - Analysis framework independent of MC generator and detector sim - Uses public HepUtils classes - Included analyses (8 TeV): - ATLAS SUSY searches: - 0 lep - 0-1-2 lep stop - b-jet plus MET - 2 lep EW - 3 lep EW - CMS multilepton SUSY search - CMS DM searches: - top pair plus MET - mono-b - mono-jet - I 3 TeV analyses in the pipeline Poisson distribution, marginalised over systematic uncertainty (via nulike) $$\mathcal{L}(n|s,b) = \int_0^\infty \frac{\left[\xi(s+b)\right]^n e^{-\xi(b+s)}}{n!} P(\xi) d\xi$$ - For each analysis: Use likelihood from the signal region with the best expected sensitivity - Combined likelihood on assumption that the different analyses are orthogonal (user's responsibility!) 4. Some preliminary GAMBIT results ## GUT-scale MSSM: NUHM2 (preliminary) $\overline{m_0, m_{\frac{1}{2}}, A_0, m_{H_u}, m_{H_d}, \tan \beta}$ (+5 nuisance par.) - Relic density as upper bound - Mostly chargino co-annihilation and A/H funnel ## Weak-scale MSSM: MSSM-7 (preliminary) $m_{\tilde{f}}, M_2, A_u, A_d, m_{H_u}, m_{H_d}, \tan \beta$ (+5 nuisance par.) - Relic density as upper bound - Mostly chargino co-annihilation and A/H funnel, some stau co-ann. # Scalar singlet DM (preliminary) $\overline{m_S, \lambda_{hS}}$ (+13 nuisance par.) ...and some ongoing work on other models... # [Your model here] ### Summary and outlook - GAMBIT is a general framework for BSM global fits - Public code release Jan/Feb 2017 - 9 papers in preparation: - 3 physics studies with GAMBIT - the main GAMBIT paper - 5 module papers (incl. ColliderBit) - ColliderBit is a fast and model-independent tool for LHC recasting - We would like to backend your code! Backup slides # Screenshot of config file for SUSY scans # LHC likelihoods purpose: LogLike capability: LHC_Combined_LogLike purpose: LogLike capability: LHC_Higgs_LogLike purpose: LogLike capability: LEP_Higgs_LogLike purpose: LogLike capability: ALEPH_Selectron_LLike purpose: LogLike capability: ALEPH_Smuon_LLike purpose: LogLike capability: ALEPH_Stau_LLike purpose: LogLike capability: L3_Selectron_LLike purpose: LogLike capability: L3_Smuon_LLike purpose: LogLike capability: L3_Stau_LLike purpose: LogLike capability: L3_Neutralino_Leptonic_LLike purpose: LoaLike capability: L3_Chargino_Leptonic_LLike purpose: LogLike capability: OPAL_Chargino_Hadronic_LLike capability: OPAL_Chargino_SemiLeptonic_LLike purpose: LogLike capability: OPAL_Chargino_Leptonic_LLike purpose: LogLike capability: OPAL_Neutralino_Hadronic_LLike # Dark matter likelihoods capability: lnL_oh2 purpose: LogLike capability: lnL_FermiLATdwarfs purpose: LogLike capability: XENON100_2012_LogLikelihood purpose: LogLike capability: LUX_2015_LogLikelihood purpose: LogLike capability: LUX_2016_prelim_LogLikelihood purpose: LogLike capability: PandaX_2016_LogLikelihood purpose: LogLike capability: PICO_2L_LogLikelihood purpose: LogLike capability: PICO_60_F_LogLikelihood purpose: LogLike capability: SuperCDMS_2014_LogLikelihood purpose: LogLike capability: SIMPLE_2014_LogLikelihood purpose: LogLike capability: IC79_loglike purpose: LogLike purpose: LoaLike capability: b2ll_LL purpose: LogLike capability: SL_LL purpose: LogLike capability: b2sll_LL purpose: LogLike capability: b2sgamma_LL # Precision physics likelihoods capability: lnL_W_mass purpose: LogLike capability: lnL_gm2 LogLike # SI nuclear nuisance parameter likelihood capability: lnL_SI_nuclear_parameters purpose: LogLike capability: lnL rho0 purpose: LogLike # SM nuisance parameter likelihoods capability: lnL_t_mass purpose: LogLike capability: lnL_mbmb capability: lnL_alpha_s purpose: LogLike purpose: LogLike # Diagnostics on connected backends | BACKENDS | VERSION | PATH TO LIB | STATUS | #FUNC | #TYPES | #CTORS | |--|---------|--|---------------|-------|--------|--------| | DDCalc0 | 0.0 | Backends/installed/DDCalc/0.0/libDDCalc0.so | OK | 62 | 0 | 0 | | DarkSUSY | 5.1.1 | Backends/installed/DarkSUSY/5.1.1/lib/libdarksusy.so | OK | 68 | 0 | 0 | | FastSim | 1.0 | Backends/installed/fastsim/1.0/libfastsim.so | absent/broken | | 0 | Θ | | FeynHiggs | 2.11 | Backends/installed/FeynHiggs/2.11.2/lib/libFH.so | OK | 14 | 0 | 0 | | HiggsBounds | 4.2.1 | Backends/installed/HiggsBounds/4.2.1/lib/libhiggsbounds.so | OK | 10 | 0 | 0 | | | | | | | | | | HiggsSignals | 1.4 | Backends/installed/HiggsSignals/1.4.0/lib/libhiggssignals.so | OK | 11 | 0 | 0 | | LibFarrayTest | 1.0 | Backends/examples/libFarrayTest.so | OK | 9 | Θ | 0 | | LibFirst | 1.0 | Backends/examples/libfirst.so | ОК | 8 | Θ | 0 | | | 1.1 | Backends/examples/libfirst.so | OK | 15 | 0 | 0 | | LibFortran | 1.0 | Backends/examples/libfortran.so | ОК | 6 | 0 | Θ | | Micr0megas | 3.5.5 | Backends/installed/micromegas/3.5.5/MSSM/MSSM/libmicromegas.so | ОК | 15 | Θ | Θ | | MicrOmegasSingletDM | 3.5.5 | Backends/installed/micromegas/3.5.5/SingletDM/SingletDM/libmicromegas.so | ОК | 13 | Θ | Θ | | Pythia | 8.186 | Backends/installed/Pythia/8.186/lib/libpythia8.so | absent/broken | Θ | 27 | 105 | | | 8.209 | Backends/installed/Pythia/8.209/lib/libpythia8.so | ОК | Θ | 28 | 107 | | SUSYPOPE | 0.2 | no path in config/backend_locations.yaml | absent/broken | 3 | 0 | Θ | | SUSY_HIT | 1.5 | Backends/installed/SUSY-HIT/1.5/libsusyhit.so | ОК | 55 | 0 | Θ | | SuperIso | 3.4 | Backends/installed/SuperIso/3.4/libsuperiso.so | ОК | 32 | 0 | Θ | | gamLike | 1.0.0 | Backends/installed/gamLike/1.0.0/lib/gamLike.so | ОК | 3 | 0 | Θ | | nulike | 1.0.0 | Backends/installed/nulike/1.0.0/lib/libnulike.so | OK | 4 | 0 | 0 | | Gambit diagnostic backend line 1 (press h for help or q to quit) | | | | | | | ### Other features - Easy to add new observables and likelihoods (backup slides) - User interface: yaml file (backup slides) - Scanners: Nested sampling, differential evolution, MCMC, genetic algorithm, t-walk... - Mixed-mode MPI + openMP parallelisation, mostly automated → scales to 10k+ cores - diskless generalisation of various Les Houches Accords - BOSS: dynamic loading of C++ classes from backends (!) - all-in or module standalone modes easily implemented from single cmake script - automatic getters for obtaining, configuring + compiling backends¹ - flexible output streams (ASCII, databases, HDF5, ...) - more more more... if a backend won't compile/crashes/shares your cat pics with the NSA blame the authors (not us... except where we **are** the authors...) Anders Kvellestad slide from Pat Scott # Hierarchical model database Finding interesting parameter regions gets harder with increasing number of dimensions... $$\lim_{D \to \infty} \frac{V_{\text{interesting}}}{V_{\text{total}}} = 0$$...so simply picking points «at random» will be highly inefficient... ...and it will mainly explore the boundary of the parameter space! $$\vec{x} = (x_1, x_2, \dots, x_D)$$ $x_i \sim U(0, 1)$ $$P(\text{boundary}) = 1 - P(\text{not boundary}) = 1 - p^D$$ ### Marginalization vs profiling (maximising) Imperial College London Marginal posterior: $$P(\theta_1|D) = \int L(\theta_1, \theta_2) p(\theta_1, \theta_2) d\theta_2$$ $$L(\theta_1) = max_{\theta_2}L(\theta_1, \theta_2)$$ Roberto Trotta