(Re)interpretation of Flavour Constraints

Marcin Chrząszcz University of Zurich & Polish Academy of Sciences

Nazila Mahmoudi Lyon University & CERN TH

In Collaboration with: F. Bernlochner, P. Jackson, P.Scott, M.White, N.Serra

(Re)interpreting the results of new physics searches at the LHC CERN, December 12, 2016

Marcin Chrząszcz, Nazila Mahmoudi

Outline

- \Rightarrow Theoretical framework for B decays
- $\Rightarrow B \rightarrow K^* \ell^+ \ell^-$ observables and calculations
- \Rightarrow Which data do Flavour factories publish
- \Rightarrow New Physics searches
- \Rightarrow What would be the best way to exchange the information?
- \Rightarrow Wilson Coefficients fits with **GAMBIT**
- \Rightarrow Questions for discussion

Theoretical framework for B decays.

Theoretical framework for B decays

A multi-scale problem

- new physics: $\Lambda_{\mathrm{NP}}\gtrsim$ TeV
- electroweak interactions: $M_W \sim 80 \text{ GeV}$
- hadronic effects: $m_b \sim 5 \text{ GeV}$
- QCD interactions: $\Lambda_{\rm QCD} \sim 0.2 \text{ GeV}$

Theoretical framework for B decays

A multi-scale problem

- new physics: $\Lambda_{\mathrm{NP}}\gtrsim$ TeV
- electroweak interactions: $M_W \sim 80 \text{ GeV}$
- hadronic effects: m_b ~ 5 GeV
- QCD interactions: $\Lambda_{\rm QCD} \sim 0.2 \text{ GeV}$

\Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1\cdots 10, S, P} \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) \right)$$

Theoretical framework for B decays

A multi-scale problem

- new physics: $\Lambda_{\rm NP}\gtrsim {\rm TeV}$
- electroweak interactions: $M_W \sim 80 \text{ GeV}$
- hadronic effects: $m_b \sim 5 \text{ GeV}$
- QCD interactions: $\Lambda_{\rm QCD} \sim 0.2 \text{ GeV}$

\Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1\cdots 10, S, P} \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) \right)$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \Delta C_i^{NP}$
- Additional operators: $\sum C_j^{NP} \mathcal{O}_j^{NP}$

\mathcal{O} perators

$$\mathcal{O}_1 = (\bar{s}\gamma_\mu T^a P_L c)(\bar{c}\gamma^\mu T^a P_L b)$$

$$\mathcal{O}_2 = (\bar{s}\gamma_\mu P_L c)(\bar{c}\gamma^\mu P_L b)$$

$$\mathcal{O}_{3} = (\bar{s}\gamma_{\mu}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu}q)$$

$$\mathcal{O}_{4} = (\bar{s}\gamma_{\mu}T^{a}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q)$$

$$\mathcal{O}_{5} = (\bar{s}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}q)$$

$$\mathcal{O}_{6} = (\bar{s}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}T^{a}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}T^{a}q)$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} \left[\bar{s} \sigma^{\mu\nu} (m_s P_L + m_b P_R) b \right] F_{\mu\nu}$$
$$\mathcal{O}_8 = \frac{g}{16\pi^2} \left[\bar{s} \sigma^{\mu\nu} (m_s P_L + m_b P_R) T^a b \right] G^a_{\mu\nu}$$

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^\mu b_L) (\bar{l}\gamma_\mu l) \\ \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^\mu b_L) (\bar{l}\gamma_\mu \gamma_5 l) \end{aligned}$$

Wilson coefficients

Two main steps:

• Calculating $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$ by requiring matching between the effective and full theories

$$C_i^{eff}(\mu) = C_i^{(0)eff}(\mu) + \frac{\alpha_s(\mu)}{4\pi} C_i^{(1)eff}(\mu) + \cdots$$

• Evolving the $C_i^{eff}(\mu)$ to scale $\mu \sim m_b$ using the RGE:

$$\mu \frac{d}{d\mu} C_i^{eff}(\mu) = C_j^{eff}(\mu) \gamma_{ji}^{eff}(\mu)$$

driven by the anomalous dimension matrix $\hat{\gamma}^{eff}(\mu)$

SM contributions to $C_i(\mu_b)$ are known to NNLO QCD and NLO EW/QED

Hadronic quantities

To compute the amplitudes:

$$\mathcal{A}(A \to B) = \langle B | \mathcal{H}_{\text{eff}} | A \rangle = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B | \mathcal{O}_i | A \rangle(\mu)$$

 $\langle B|\mathcal{O}_i|A\rangle$: hadronic matrix element

How to compute matrix elements?

 \rightarrow Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...

 \rightarrow Describe hadronic matrix elements in terms of hadronic quantities

Two types of hadronic quantities:

- Decay constants: Probability amplitude of hadronising quark pair into a given hadron
- Form factors: Transition from a meson to another through flavour change

$B \rightarrow K^* \ell^+ \ell^-$ – Angular distributions

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \rightarrow \bar{K}^{*0}\ell^+\ell^ (\bar{K}^{*0} \rightarrow K^-\pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

$B \rightarrow K^* \ell^+ \ell^-$ – Angular distributions

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^- \ (\bar{K}^{*0} \to K^- \pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Main operators:

$$\mathcal{O}_9 = rac{e^2}{(4\pi)^2} (ar{s} \gamma^\mu b_L) (ar{\ell} \gamma_\mu \ell), \ \ \mathcal{O}_{10} = rac{e^2}{(4\pi)^2} (ar{s} \gamma^\mu b_L) (ar{\ell} \gamma_\mu \gamma_5 \ell)$$
 ,

F. Kruger et al., Phys. Rev. D 61 (2000) 114028;

W. Altmannshofer et al., JHEP 0901 (2009) 019; U. Egede et al., JHEP 1010 (2010) 056

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_V d\phi} = \frac{9}{32\pi} J(q^2, \theta_\ell, \theta_V, \phi)$$

 $J(q^2, \theta_\ell, \theta_V, \phi) = \sum_i J_i(q^2) f_i(\theta_\ell, \theta_V, \phi)$

 $^{\searrow}$ angular coefficients J_{1-9}

 $^{\searrow}$ functions of the transversity amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t ,

and A_S , Transversity amplitudes: functions of Wilson coefficients and form factors

Marcin Chrząszcz, Nazila Mahmoudi

A closer look to the Effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}}$$
$$\mathcal{H}_{\text{eff}}^{\text{sl}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10} C_i^{(\prime)} O_i^{(\prime)} \Big]$$

 $\langle \bar{K}^* | \mathcal{H}_{\text{eff}}^{\text{sl}} | \bar{B} \rangle$: $B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$

Transversity amplitudes:

$$\begin{aligned} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{9}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \left[(\ldots) A_{1}(q^{2}) + (\ldots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (\ldots) T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \\ & \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{aligned}$$

A closer look to the Effective Hamiltonian:

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}} \\ \mathcal{H}_{\text{eff}}^{\text{had}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_8 O_8 \right] \\ \mathcal{A}_{\lambda}^{(\text{had})} &= -i \frac{e^2}{q^2} \int \! d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\text{em,lept}}(x) | 0 \rangle \\ &\qquad \times \int \! d^4 y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^* | T \{ j^{\text{em,had},\mu}(y) \mathcal{H}_{\text{eff}}^{\text{had}}(0) \} | \bar{B} \rangle \\ &\equiv \frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \left[\underbrace{\text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}})}_{\text{Non-Fact.,}} + \underbrace{\frac{h_{\lambda}(q^2)}{\text{power corrections}}}_{\text{tions}} \right] \end{aligned}$$

Marcin Chrząszcz, Nazila Mahmoudi

A closer look to the Effective Hamiltonian:

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}} &= \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} \\ \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_8 O_8 \right] \\ \mathcal{A}_{\lambda}^{(\mathrm{had})} &= -i \frac{e^2}{q^2} \int \!\! d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\mathrm{em,lept}}(x) | 0 \rangle \\ &\times \int \!\! d^4 y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^* | T \{ j^{\mathrm{em,had},\mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0) \} | \bar{B} \rangle \\ &\equiv \frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \left[\underbrace{\mathrm{LO \ in} \ \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}})}_{\mathrm{Non-Fact.,}} + \underbrace{\frac{h_{\lambda}(q^2)}{p^{\mathrm{ower}}} \right] \\ &\to \mathrm{unknown} \end{aligned}$$

A closer look to the Effective Hamiltonian:

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}} \\ \mathcal{H}_{\text{eff}}^{\text{had}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_8 O_8 \right] \\ \mathcal{A}_{\lambda}^{(\text{had})} &= -i \frac{e^2}{q^2} \int \!\! d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\text{em,lept}}(x) | 0 \rangle \\ &\times \int \!\! d^4 y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^* | T \{ j^{\text{em,had},\mu}(y) \mathcal{H}_{\text{eff}}^{\text{had}}(0) \} | \bar{B} \rangle \\ &\equiv \frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \left[\underbrace{\text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}})}_{\text{Non-Fact.,}} + \underbrace{\frac{h_{\lambda}(q^2)}{\text{power corrections}}}_{\text{opwer corrections}} \right] \end{aligned}$$

The observed deviations from the SM can be explained with 20-50% non-factorisable power corrections at the observable level (Ciuchini et al., 1512.07157)

This corresponds to more than 150% error at the amplitude level for the critical bins!

Marcin Chrząszcz, Nazila Mahmoudi

$B \rightarrow K^* \mu^+ \mu^-$ – Optimized observables

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\text{bin}} = \frac{1}{\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\text{bin}} = \frac{-1}{2\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \quad \langle P'_8 \rangle_{\text{bin}} = \frac{-1}{\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{\rm bin}' = \sqrt{-\int_{\rm bin} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{\rm bin} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

+ CP violating clean observables and other combinations

U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104 S. Descotes-Genon et al., JHEP 1305 (2013) 137

Marcin Chrząszcz, Nazila Mahmoudi

Flavour measurements

Marcin Chrząszcz, Nazila Mahmoudi

Detector effects 1/2

 \Rightarrow In Flavour factories because we usually measure the properties of a B meson decay we can provide the measurements that are corrected for the detector effects!

 \Rightarrow The differences that "Reco recovery" doesn't recover are recovered at the analysis stage.

 \Rightarrow Some imperfections (usually small), are assigned as systematics!

Thanks to Andy Buckley for the plot.

Marcin Chrząszcz, Nazila Mahmoudi

Detector effects 2/2

 \Rightarrow For example: measurement of angular coefficients of $B \to K^* \mu \mu$, arXiv::1512.04442, arXiv::1604.04042

 \Rightarrow In Flavour physics we have ways to ensure we control our detector effects.

Marcin Chrząszcz, Nazila Mahmoudi

Reinterpretation of Flavour Constraints

 $^{14}/_{25}$

Detector effects 2/2

 \Rightarrow For example: measurement of angular coefficients of $B \to K^* \mu \mu$, arXiv::1512.04442, arXiv::1604.04042

 \Rightarrow In Flavour physics we have ways to ensure we control our detector effects.

Marcin Chrząszcz, Nazila Mahmoudi

Reinterpretation of Flavour Constraints

/ 25

Detector effects 2/2

 \Rightarrow For example: measurement of angular coefficients of $B \to K^* \mu \mu$, arXiv::1512.04442, arXiv::1604.04042

 \Rightarrow In Flavour physics we have ways to ensure we control our detector effects.

Marcin Chrząszcz, Nazila Mahmoudi

Reinterpretation of Flavour Constraints

/ 25

Published data format

- \Rightarrow There are number of ways the B-factories publish their results.
- \Rightarrow Most of the time the information to links are on the collaboration web pages:

http://belle.kek.jp/belle/publications.html

Marcin Chrzaszcz, Nazila Mahmoudi

e LHCb Public results

LHCb publications

CARRIERS I MARKON

CERN document server

Enformation Discussion (0) Files	
Angular analysis of the \$8°(0)vightarrow K*(*0)vmu*(-)\mu*(-)\$ decay using 3 fb\$*(-13)\$ of integrated luminosity - Aaij, Roel et al - arXi	v:1512.04442
Main file(s):	
間 IHEP02(2016)104	
version 1 JHEP02(2016)104.pdf (646 HB) 23 Har 2016, 1444 Springer Open Access article	
🗈 arXiv:1512.04442	
version 2 (see prevince) arXiv:1512.04442.pdf [1x3 H8] 69 Her 2016, 06:56	
Additional file(s):	
LHCb-PAPER-2015-051-figures	
version 1 LHCb-PAPER-2015-051-figures.zip [45 H8] 11 Jan 2014. 1510 Related data file(s)	
B LHCb-PAPER-2015-051-supplementary-updated	
venien 1 LHCb-PAPER-2015-051-supplementary-updated.zip (33.73 HB) 17 Hay 2016, 17.27 Related supplementary data file(s) updated	
	Similar records

⇒ Figure on CDS and LHCb publications page available in many formats: .pdf,

- .eps, .png, ROOT_.C
- \Rightarrow No need to read the numbers from the plot any more!
- ⇒ Supplementary material not included in the paper

(usually material that did not fit paper due to space constraints)

Marcin Chrząszcz, Nazila Mahmoudi

CERN document server

[to restricted-access page] <u>INFORMATION</u> LICG-PAPER-2015-051 PH-EP-2015-0314 ARXIV:1512.04442 [ODF] (SUBHITTED ON 14 DEC 2015) JHEP 02 (2016) 104 INSPIRE 1400497	Abstract An arguma makylis of the $B^0 \to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$ decay is presented. The dataset correspon at the LPO experiment. The complete angular information from the decay is used to determine CP contamination from decays with the $K^+\pi^-$ system in an 3-wave configuration. The angular observ- mass squared of the dimuon system. The observables are determined both from an unbinned maxin distribution. In addition, by fitting for q ² -dependent decay angulitodes in the regional last q ² a do- computed. A global fit is performed to the complete set of CP-averaged observables obtained from based on the Standard Mode at the level 4.3.4 standard diversions. These differences could be equ an unexpectedly large hardnic effect that is not accounted for in the Standard Model predictions. Pliqures and Captions	ds to an integrated lur averaged observables bibles and their correlat unm likelihood fit and t GeV^2/c^2 , the zero-crr the maximum likelihoo lained by contributions	insidity of $3.0/b^{-1}$ of pp collision data collects and CP asymmetries, taking account of possi one are reported in times of a^{-1} , the invariant γ using the principal moments of the angular sing points of avera linguiar observables an dfit. This fit indicates differences with predict from physics beyond the Standard Model, or I
TOOLS CITED 7.1 TIMES GET BIBTEX HEPDATA CONTACT EDITORIAL BOARD EMAIL	Invariant mass of the $K^+\pi^-\mu^+\mu^-$ system versus q^2 . The decay $B^0\to K^{c0}\mu^+\mu^-$ is clearly viable inside the dashed vertical lines. The horizontal lines denote the charmonium regions, where the tree-level decays $B^0\to J/\psiK^{c0}$ and $B^0\to\psi(2S)K^{c0}$ dominate. These candidates are excluded from the analysis.	Fig1.pdf (30 KiB) Hilbef png (700 KiB) Thumbnail (205 KiB)	BOD

⇒ Figure on CDS and LHCb publications page available in many formats: .pdf,

- .eps, .png, ROOT_.C
- \Rightarrow No need to read the numbers from the plot any more!
- ⇒ Supplementary material not included in the paper

(usually material that did not fit paper due to space constraints)

Unification of format

 \Rightarrow More and more results are being published on HepData make them "one click away" to get.

HEPData QSearch HEPData Search	h.								O About C Submission Help 40 Sign in
Q Browse all 🖉 Aaij, Roel et al.								Last update	ited on 2016-09-27 15:25 📕 Accessed 46 times 🛛 😕 Cite JSON
Close 20 Physics of the $B^{(1)} \rightarrow K^{(2)} \mu^+ \mu^-$ decay using 3 the $^{-1}$ of integrated luminosity using 3 the $^{-1}$ of integrated luminosity using 3 the $^{-1}$ of integrated luminosity and the large state of the second state of the secon	ADVANCES OF SUBJECT SUBJE	RE SQRT(S) SQRT(S) q ² (GEV**2) 0.1-0.98 1.1-2.5 2.5-4 4-6	P P → 80 < 7000.0 GeV 8000.0 GeV FL 0.263 225 mm 8000.0 GeV 60.0 0.66 237 mm 8000.0 GeV 0.876 238 mm 8000.0 GeV 0.876 238 mm 8000.0 GeV 0.64 238 mm 80000.0 GeV 0.64 238 mm 8000.0 GeV 0.64	K*(892) < K+ P S ₀ -0.035 10963 m ² 10077 2007 10077 2007 10077 2007 10077 2007 10077 2007 10077 2007 10077 2007 1007 2007 1007 2007 1007 2007 1007 1007 2007 1007	S4 0.082 300 mm -0.077 200 mm axees mm	-X S3 0.17 287 mm mass m mass m 0.137 287 mm mass m mass m -0.022 285 mm -0.146 287 mm -0.146 -	AFB -0.003 327 m -0.191 337 m -0.118 337 m -0.118 337 m -0.005 339 m -0.005 339 m -0.005	List update * Macon Proc S7 0.015 sites if it sites if it -0.219 282 sites if it 0.068 282 -0.016 30000 fr 30000 fr -0.016 30000 fr	<pre>construct_construct_constructure () () () () () () () () () () () () ()</pre>
complete set of CP -averaged observables obtained from the maximum	Data from Appendix A, Table 6 10.3739203mpdtat.242472456 Optimised anguing missionic evaluated by the unknined maximum likelihood ft. The first uncertainties are statistical and the second	0-8	0.379 #3.046 stat #3.053 spi 0.493	-0.042 200 mil 10000 mil 10000 mil	-0.2%	-0.249 282° stat #0553 sp -0.327	0.152 32 ²¹ mi econe os	-0.047	Variables Pr. Servesternor

Unification of format

\Rightarrow More and more papers from Flavour community are appearing on <code>HepData</code>.

 \Rightarrow Even if experimentalist publish a number there is always a chance that the data might be misinterpreted by theorists.

 \Rightarrow Even if experimentalist publish a number there is always a chance that the data might be misinterpreted by theorists.

 \Rightarrow Many times the error gets symmetrized, the correlation neglected, or worse...

Publish likelihood?

⇒ The proposal that I would like to make for discussion is that HepData portal (or similar) would have a possibility that experiments could publish the whole multidim. likelihood function.

 \Rightarrow In this way we ensure that the function will be used as the experiment intended to.

Global fits

Marcin Chrząszcz, Nazila Mahmoudi

GAMBIT: a *second-generation* global fit code

GAMBIT: The Global And Modular BSM Inference Tool

Overriding principles of GAMBIT: flexibility and modularity

- General enough to allow fast definition of new datasets and theoretical models
- Plug and play scanning, physics and likelihood packages
- Extensive model database not just small modifications to constrained MSSM (NUHM, etc), and not just SUSY!
- Extensive observable/data libraries (likelihood modules)
- Many statistical options Bayesian/frequentist, likelihood definitions, scanning algorithms
- A smart and fast LHC likelihood calculator
- Massively parallel
- Full open-source code release soon!
- Hear more in Anders Kvellestad tmr!

The GAMBIT Collaboration

30 Members, 16 institutions, 10 countries, 11 Experiments, 4 major theory codes

ATLAS	A. Buckley, C. Rogan, M. White,
Flavour exp.	F. Bernlochner, M. Chrzaszcz, P. Jackson, N. Serra
Fermi-LAT	J. Conrad, J. Edsjö, G. Martinez P. Scott
СТА	C. Balázs, T. Bringmann, J. Conrad, M. White
HESS	J. Conrad
IceCube	J. Edsjö, P. Scott
AMS-02	A. Putze
CDMS, DM-ICE	L. Hsu
XENON/DARWIN	J. Conrad
Theory	P. Athron, C. Balázs, T. Bringmann, J. Cornell, L. Dal, J. Edsjö, B. Farmer, A. Krislock, A. Kvellestad, M. Pato, F. Mahmoudi, A. Raklev, P. Scott, C. Weniger, M. White

+recently joined: T. Gonzales, J. McKay, R. Ruiz, R. Trotta -recently retired: A. Saavedra, C. Savage

22 /25

Global Analysis with Gambit

- Wilson coefficients and $b \rightarrow s\ell^+\ell^-$ observables implemented in **SuperIso**
- Superiso: public code for calculating flavour physics observables Mahmoudi, CPC 178 (2008) 745: CPC 180 (2009) 1579, CPC 180 (2009) 1718 available from http://superiso.in2p3.fr/
- SuperIso interfaced into GAMBIT through the flavour physics module FlavBit

Web page: http://gambit.hepforge.org/

- FlavBit determines the likelihoods by comparing the theoretical evaluations and the experimental results taking into account the experimental and theoretical correlations.
- In this study we used:
 - $\circ B \rightarrow K^* \mu \mu$ with all the q^2 bins and correlations matrices from HepData!
 - $\circ \ \ B_{s/d} \to \mu \mu \\ \circ \ \ b \to s \gamma$

Global Analysis with Gambit - Results

Reinterpretation of Flavour Constraints

Marcin Chrząszcz, Nazila Mahmoudi

Conclusions

- \Rightarrow Flavour physics is a powerful tool to constrain NP models!
- \Rightarrow Measurements are becoming more complex!
- \Rightarrow Ability to publish the full multidim. likelihoods soon will be needed!
- \Rightarrow **GAMBIT** is the new player for fitting Flavour observables and will be made public soon.
- \Rightarrow $3-4\,\sigma$ deviations are present and Run2 data should clear the picture where it's NP or not.

Backup

Marcin Chrząszcz, Nazila Mahmoudi

Numerical approach

Marcin Chrząszcz, Nazila Mahmoudi