Dark Matter characterisation and interpretation of the MET signature at the LHC

Alexander Belyaev

Southampton University & RAL collaborators: L. Panizzi, A. Pukhov, M. Thomas: arXiv:1610.07545 Dec 13, 2016 (Re) interpretation workshop CERN

What do we know about Dark Matter?

Stable

Couplings gravity V Weak Higgs Quarks/gluons ? Leptons ? New sector ?

 Yes
 ?

 symmetry

 behind stability
 ?

 Thermal relic

 Yes
 ?

 No
 ?

Spin ?

Mass ?

Hunting for DM at Colliders

Motivation for DM Characterisation

- If DM is produced at the LHC:
 - We need to be able to identify the underlying model.
 - SUSY? Extra Dimensions? Inert Two Higgs Doublet Model?
 - We need to know: Mass, Spin, Mediator properties
- Also: From LHC DM forum (arXiv:1507.00966)
 - "Different spins of Dark Matter particles will typically give similar results..... Thus the choice of Dirac fermion Dark Matter should be sufficient as benchmarks for the upcoming Run-2 searches."

Is this true? Important for future studies on exclusion/discovery of DM

This study

- The effects of DM spin on observables at the LHC for Spin=0,1/2,1 for events with a mono-jet signature
- Consider contact interactions first: simplest case.
 - Complete set of DIM5/DIM6 operators involving two SM quarks (gluons) and two DM particles.
- Explore LHC discovery potential for scenarios with different DM spins and potential to distinguish these scenarios

DIM5/6 operators (spin 0,1/2,1)

Complex scalar D		
$\frac{\tilde{m}}{\sqrt{2}}\phi^{\dagger}\phi\bar{q}q$	[<i>C</i> 1]*	
$\frac{1}{M^2}\phi^{\dagger}\phi\bar{q}i\gamma^5q$	[<i>C</i> 2]*	
$\frac{1}{\Lambda^2} \phi^{\dagger} i \overleftrightarrow{\partial_{\mu}} \phi \overline{q} \gamma^{\mu} q$	[<i>C</i> 3]	
$rac{1}{\Lambda^2} \phi^\dagger i \overleftrightarrow{\partial_\mu} \phi \overline{q} \gamma^\mu \gamma^5 q$	[<i>C</i> 4]	
$\frac{1}{\Lambda^2} \phi^{\dagger} \phi G^{\mu\nu} G_{\mu\nu}$	[C5]*	
$\frac{1}{\Lambda^2}\phi^{\dagger}\phi\tilde{G}^{\mu u}G_{\mu u}$	$[C6]^*$	
Dirac fermion D)M†	-
$\frac{1}{\Lambda^2} \bar{\chi} \chi \bar{q} q$	[D1]*	
$\frac{1}{\Lambda^2} \bar{\chi} i \gamma^5 \chi \bar{q} q$	[D2]*	
$\frac{1}{\Lambda^2} \bar{\chi} \chi \bar{q} i \gamma^5 q$	[D3]*	
$rac{1}{\Lambda^2}ar{\chi}\gamma^5\chiar{q}\gamma^5q$	[D4]*	
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$	[D5]	
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} q$	[D6]	
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu \gamma^5 q$	[D7]	
$rac{1}{\Lambda^2}ar{\chi}\gamma^\mu\gamma^5\chiar{q}\gamma_\mu\gamma^5q$	[D8]	$\frac{1}{\Lambda^2}$
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$	[D9]*	$\frac{1}{2\Lambda^2}$
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} i \gamma^5 \chi \bar{q} \sigma_{\mu\nu} q$	[D10]*	$\frac{1}{2\Lambda^2}$

Complex vector DM [‡]	
$\frac{\tilde{m}}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} \bar{q} q$	[V1]*
$\frac{1}{m} V^{\dagger}_{\mu} V^{\mu} \overline{q} i \gamma^5 q$	[V2]*
$\frac{\Lambda_1}{2\Lambda^2} (V^{\dagger}_{\nu} \partial_{\mu} V^{\nu} - V^{\nu} \partial_{\mu} V^{\dagger}_{\nu}) \bar{q} \gamma^{\mu} q$	[V3]
$\frac{2\Lambda}{2\Lambda^2} (V^{\dagger}_{\nu} \partial_{\mu} V^{\nu} - V^{\nu} \partial_{\mu} V^{\dagger}_{\nu}) \bar{q} i \gamma^{\mu} \gamma^5 q$	[V4]
$\frac{2\tilde{m}}{\Lambda^2}V^{\dagger}_{\mu}V_{\nu}\bar{q}i\sigma^{\mu\nu}q$	[V5]
$\frac{1}{m} \frac{1}{\sqrt{2}} V^{\dagger}_{\mu} V_{\nu} \bar{q} \sigma^{\mu\nu} \gamma^5 q$	[V6]
$\frac{1}{2\Lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} \gamma^{\mu} q$	[V7P]
$\frac{2\Lambda}{2\Lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} - V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} i \gamma^{\mu} q$	[V7M]
$\frac{2\Pi}{2\Lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} \gamma^{\mu} \gamma^5 q$	[V8P]
$\frac{1}{2\Lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} - V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} i \gamma^{\mu} \gamma^5 q$	[V8M]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V_{\nu}^{\dagger}\partial_{\rho}V_{\sigma} + V_{\nu}\partial_{\rho}V_{\sigma}^{\dagger}) \bar{q}\gamma_{\mu}q$	[V9P]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V^{\dagger}_{\nu}\partial^{\nu}V_{\mu} - V^{\nu}\partial^{\nu}V^{\dagger}_{\mu}) \bar{q} i\gamma_{\mu}q$	[V9M]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V^{\dagger}_{\nu}\partial_{\rho}V_{\sigma} + V_{\nu}\partial_{\rho}V^{\dagger}_{\sigma})\bar{q}\gamma_{\mu}\gamma^5 q$	[V10P]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V^{\dagger}_{\nu}\partial^{\nu}V_{\mu} - V^{\nu}\partial^{\nu}V^{\dagger}_{\mu}) \bar{q} i\gamma_{\mu}\gamma^5 q$	[V10M]
$\frac{1}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} G^{\rho\sigma} G_{\rho\sigma}$	$[V11]^*$
$rac{1}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} \tilde{G}^{ ho\sigma} G_{ ho\sigma}$	[V12]*
$ \begin{array}{ccc} \frac{1}{\Lambda^2} \bar{\chi} q \bar{q} \chi & [D1T] \\ \frac{i}{2\Lambda^2} (\bar{\chi} \gamma^5 q \bar{q} \chi + \bar{\chi} q \bar{q} \gamma^5 \chi) & [D2T] \\ \frac{1}{2} (\bar{\chi} \gamma^5 q \bar{q} \chi - \bar{\chi} q \bar{q} \gamma^5 \chi) & [D3T] \end{array} $	endent
$\frac{1}{2\Lambda^2} (\chi^{\gamma} qq\chi - \chi^{q}q\gamma \chi)$ [D31] operators $\frac{1}{\Lambda^2} \bar{\chi} \gamma^5 q \bar{q} \gamma^5 \chi$ [D4T]	can be written

Mapping EFT operators to simplified models

Mono-jet diagrams from EFT operators

Missing E_{τ} (MET) distributions: the large range of slopes

M_{DM} dependence is weak for 10-100 GeV range

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] and the fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

M(DM,DM) distributions are defined by energy behaviour of DM operator and are different for different DM spins

On the BG uncertainty

The BG is statistically driven, e.g. pp-> Zj → vvj BG is defined from the pp → Zj → l⁺l⁻j one

CMS-PAS-EXO-16-013

E ^{miss} Range	$Z(\nu\nu)$ +jets	$W(\ell\nu)$ +jets	Z(ℓℓ)+jets	γ +jets	Тор	Diboson	QCD	Total	Total	Data
GeV)					-			(Pre-fit)	(Post-fit)	
200 - 230	14919 ± 221	11976 ± 196	207 ± 13	230 ± 14	564 ± 55	251 ± 41	508 ± 171	27761 ± 1464	28654 ± 171	28601
230 - 260	7974 ± 116	5776 ± 101	92.9 ± 5.7	101 ± 6	267 ± 26	157 ± 26	308 ± 104	14114 ± 757	14675 ± 97	14756
260 - 290	4467 ± 70	2867 ± 50	37.9 ± 2.3	63.7 ± 3.9	116 ± 11	77.3 ± 12.7	38.3 ± 21.0	7193 ± 351	7666 ± 68	7770
290 - 320	2518 ± 46	1520 ± 34	18.4 ± 1.1	29.6 ± 1.8	56.7 ± 5.6	42.9 ± 7.1	29.8 ± 10.5	4083 ± 204	4215 ± 48	4195
320 - 350	1496 ± 35	818 ± 20	10.0 ± 0.6	19.7 ± 1.2	33.6 ± 3.3	25.4 ± 4.2	9.0 ± 5.4	2385 ± 118	2407 ± 37	2364
350 - 390	1204 ± 31	555 ± 15	3.9 ± 0.2	12.7 ± 0.8	24.5 ± 2.4	22.1 ± 3.6	6.0 ± 3.5	1817 ± 87	1826 ± 32	1875
390 - 430	684 ± 20	275 ± 9	2.1 ± 0.1	8.3 ± 0.5	9.8 ± 1.0	13.9 ± 2.3	3.0 ± 1.6	978 ± 45	998 ± 23	1006
430 - 470	382 ± 14	155 ± 6	0.96 ± 0.06	4.9 ± 0.3	9.4 ± 0.9	6.6 ± 1.1	1.0 ± 0.8	589 ± 30	574 ± 17	543
470 - 510	248 ± 11	87.3 ± 3.8	0.47 ± 0.03	3.7 ± 0.2	0.22 ± 0.02	5.1 ± 0.8	0.65 ± 0.44	337 ± 15	344 ± 12	349
510 - 550	160 ± 8	52.2 ± 2.7	0.23 ± 0.01	2.0 ± 0.1	2.7 ± 0.3	2.2 ± 0.4	0.28 ± 0.19	211 ± 9	219 ± 9	216
550 - 590	99.5 ± 6.0	29.2 ± 1.9	0.12 ± 0.01	1.8 ± 0.1	0.94 ± 0.09	2.0 ± 0.3	0.19 ± 0.14	134 ± 6	134 ± 7	142
590 - 640	77.3 ± 4.9	18.9 ± 1.4	0.09 ± 0.01	0.46 ± 0.03	< 0.13	1.7 ± 0.3	0.11 ± 0.08	100 ± 4	98.5 ± 5.8	111
640 - 690	44.8 ± 3.5	11.2 ± 0.9	0.017 ± 0.001	0.19 ± 0.01	< 0.13	1.5 ± 0.2	0.06 ± 0.05	59.6 ± 2.6	58.0 ± 4.1	61
690 - 740	27.8 ± 2.5	6.1 ± 0.6	0.013 ± 0.0008	0.57 ± 0.04	< 0.13	0.69 ± 0.11	0.02 ± 0.02	36.6 ± 1.5	35.2 ± 2.9	32
740 - 790	21.8 ± 2.3	5.3 ± 0.6	< 0.005	0.28 ± 0.02	0.23 ± 0.02	0.11 ± 0.02	0.02 ± 0.02	23.8 ± 1.0	27.7 ± 2.7	28
790 - 840	13.5 ± 1.9	2.8 ± 0.4	< 0.005	0.18 ± 0.01	0.27 ± 0.03	0.010 ± 0.001	0.008 ± 0.007	15.3 ± 0.7	16.8 ± 2.2	14
840 - 900	9.5 ± 1.4	2.0 ± 0.3	< 0.005	0.28 ± 0.02	< 0.13	0.25 ± 0.04	< 0.008	12.2 ± 0.6	12.0 ± 1.6	13
900 - 960	5.4 ± 1.0	1.1 ± 0.2	< 0.005	< 0.08	< 0.13	0.37 ± 0.06	< 0.008	7.6 ± 0.3	6.9 ± 1.2	7
960 - 1020	3.3 ± 0.8	0.77 ± 0.21	< 0.005	0.12 ± 0.01	< 0.13	0.23 ± 0.04	< 0.008	5.2 ± 0.3	4.5 ± 1.0	3
1020 - 1160	2.5 ± 0.8	0.52 ± 0.16	< 0.005	< 0.08	< 0.13	0.16 ± 0.03	< 0.008	3.6 ± 0.2	3.2 ± 0.9	1
1160 - 1250	1.7 ± 0.6	0.3 ± 0.11	< 0.005	< 0.08	< 0.13	0.16 ± 0.03	< 0.008	2.3 ± 0.1	2.2 ± 0.7	2
> 1250	1.4 ± 0.5	0.19 ± 0.08	< 0.005	< 0.08	< 0.13	0.06 ± 0.01	< 0.008	1.6 ± 0.1	1.6 ± 0.6	3

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-16-013/#AddFig

On the BG uncertainty

• The BG is statistically driven, e.g. pp-> Zj \rightarrow vvj BG is defined from the pp \rightarrow Zj \rightarrow I⁺I⁻j one CMS-PAS-EXO-16-013

E ^{miss} Range	$Z(\nu\nu)$ +jets	$W(\ell\nu)$ +jets	Total	Total	Data
GeV)			(Pre-fit)	(Post-fit)	
200 - 230	14919 ± 221	11976 ± 196	27761 ± 1464	28654 ± 171	28601
230 - 260	7974 ± 116	5776 ± 101	14114 ± 757	14675 ± 97	14756
260 - 290	4467 ± 70	2867 ± 50	7193 ± 351	7666 ± 68	7770
290 - 320	2518 ± 46	1520 ± 34	4083 ± 204	4215 ± 48	4195
320 - 350	1496 ± 35	818 ± 20	2385 ± 118	2407 ± 37	2364
350 - 390	1204 ± 31	555 ± 15	1817 ± 87	1826 ± 32	1875
390 - 430	684 ± 20	275 ± 9	978 ± 45	998 ± 23	1006
430 - 470	382 ± 14	155 ± 6	589 ± 30	574 ± 17	543
470 - 510	248 ± 11	87.3 ± 3.8	337 ± 15	344 ± 12	349
510 - 550	160 ± 8	52.2 ± 2.7	211 ± 9	219 ± 9	216
550 - 590	99.5 ± 6.0	29.2 ± 1.9	134 ± 6	134 ± 7	142
590 - 640	77.3 ± 4.9	18.9 ± 1.4	100 ± 4	98.5 ± 5.8	111
640 - 690	44.8 ± 3.5	11.2 ± 0.9	59.6 ± 2.6	58.0 ± 4.1	61
690 - 740	27.8 ± 2.5	6.1 ± 0.6	36.6 ± 1.5	35.2 ± 2.9	32
740 - 790	21.8 ± 2.3	5.3 ± 0.6	23.8 ± 1.0	27.7 ± 2.7	28
790 - 840	13.5 ± 1.9	2.8 ± 0.4	15.3 ± 0.7	16.8 ± 2.2	14
840 - 900	9.5 ± 1.4	2.0 ± 0.3	12.2 ± 0.6	12.0 ± 1.6	13
900 - 960	5.4 ± 1.0	1.1 ± 0.2	7.6 ± 0.3	6.9 ± 1.2	7
960 - 1020	3.3 ± 0.8	0.77 ± 0.21	5.2 ± 0.3	4.5 ± 1.0	3
1020 - 1160	2.5 ± 0.8	0.52 ± 0.16	3.6 ± 0.2	3.2 ± 0.9	1
1160 - 1250	1.7 ± 0.6	0.3 ± 0.11	2.3 ± 0.1	2.2 ± 0.7	2
> 1250	1.4 ± 0.5	0.19 ± 0.08	1.6 ± 0.1	1.6 ± 0.6	3

Alexander Belyaev

Dark Matter Characterisation at the LHC

On the BG uncertainty

- The BG is statistically driven, e.g. pp-> Zj \rightarrow vvj BG is defined from the pp \rightarrow Zj \rightarrow I⁺I⁻j one
- For the high enough statistics the BG error can be as low as 1%, but not much lower than this!
- Once ~ 1% δBG is reached (we assume as a floor), the increase of luminosity does not improve LHC sensitivity: the BG uncertainty linearly grows with luminosity together with signal
- at about 300 fb⁻¹ such saturation is reached for all operators for current LHC cuts

Alexander Belyaev

Distinguishing DM operators: different efficiencies (MET slopes) – about factor of 50 spread (in IM7) for different operators and the SM BG

Distinguishing the DM operators: χ^2 for pairs of DM operators

 $\chi^{2} = \sum_{i=EM3, EM4, EM5, EM6, IM7} [(N1_{i} - \kappa \times N2_{i})/\delta BG_{i}]^{2} : \text{ if } \chi^{2} > 9.48 \text{ (95%CL for 4 DOF)} - \text{ operators can be distinguished!}$

11

• N1 signal is assumed at 1σ

N2 signal is tested against it	Co	mplex S	Dirac Fermion DM				
at high luminosity	10 (GeV	100	GeV	$10 { m GeV}$	$100 {\rm GeV}$	
	C1 C5		C1	C5	D9	D9	

			1					
Complex Scalar DM	$10 \ { m GeV}$	C1 C5	0.0 25.26	33.68 0.0	1.35 1 7.8 4	36.36 0.07	51.38 1.8	63.44 4.56
	$100 \ \mathrm{GeV}$	C1 C5	1.29 27.1	22.62 0.07	0.0 19.36	24.69 0.0	37.85 1.51	48.21 4.0
Dirac Fermion DM	$10 \ { m GeV}$	D9	36.37	1.7	28.17	1.43	0.0	0.86
	$100 \ { m GeV}$	D9	43.14	4.13	34.48	3.64	0.82	0.0

Distinguishing the DM operators: χ^2 for pairs of DM operators

 $\chi^{2} = \sum_{i=EM3, EM4, EM5, EM6, IM7} [(N1_{i} - \kappa \times N2_{i})/\delta BG_{i}]^{2} : \text{ if } \chi^{2} > 9.48 \text{ (95%CL for 4 DOF)} - \text{ operators can be distinguished!}$

			Complex Scalar DM			Dirac Fe	ermion DM	Complex Vector DM				
			C1	C5	C1	C5	10 Gev D9	D9	V1	V3	V5	V11
Complex Scalar DM	$10 \ { m GeV}$	C1 C5	0.0 25.26	33.68 0.0	1.35 1 7.8 4	36.36 0.07	51.38 1.8	63.44 4.56	37.57 0.41	50.0 1.4	73.55 7.29	96.47 15.09
	$\frac{100}{\mathrm{GeV}}$	$C1 \\ C5$	1.29 27.1	22.62 0.07	0.0 19.36	24.69 0.0	37.85 1.51	48.21 4.0	26.33 0.38	36.4 1.04	57.02 6.52	77.7 13.97
Dirac Fermion	$10 \ { m GeV}$	D9	36.37	1.7	28.17	1.43	0.0	0.86	1.08	0.12	2.1	6.4
DM	$\frac{100}{\mathrm{GeV}}$	D9	43.14	4.13	34.48	3.64	0.82	0.0	3.4	1.03	0.3	2.91
Complex		V1	27.87	0.41	20.54	0.37	1.13	3.71	0.0	0.92	6.13	12.87
Vector	10	V3	35.62	1.33	27.27	0.99	0.12	1.08	0.89	0.0	2.44	7.22
DM	GeV	V5	48.96	6.47	39.92	5.82	1.98	0.3	5.5	2.28	0.0	1.38
		V11	61.93	12.92	52.45	12.03	5.81	2.75	11.14	6.51	1.33	0.0

Summary/Discussion

- Different DM spin \rightarrow different energy dependence of the DM operator, different M_{DMDM} distributions \rightarrow different slopes of MET
 - potential to characterize DM spin, different efficiencies, should be explored by ATLAS/CMS
- Application beyond EFT
 - when the DM mediator is not produced on-the-mass-shell M_{DMDM} is not fixed: t-channel mediator or mediators with mass below 2M_{DM}
 - On the contrary, when DM comes from the resonance decay, MET shape will be the same for different DM spins (given that SM operator is fixed)
- Projection for 300 fb⁻¹: it is possible to distinguish C1-C2,C5-C6,D9-D10,V1-V2,V3-V4,V5-V6 and V11-12 from each other; all models are public at HEPMDB, https://hepmdb.soton.ac.uk/ has got a permanent server status at SOTON!
- Re-interpretation at high-luminosity is limited by present searches
 - Low MET cuts \rightarrow low S/B ratio, hits 1% floor at 300 fb⁻¹, is this a limit?
 - the study on improving of the LHC sensitivity within the CheckMATE is on the way: will add a "projected" analysis to CM

Thank you!

Backup Slides

Absolute values of the cross sections provide an additional information to distinguish EFT operators

Missing E_{τ} (MET) distributions: the large range of slopes

M_{DM} dependence is weak for 10-100 GeV range

MET shape visibly changes for heavy DM case

While M(DM,DM) distributions are defined by spin of DM!

Alexander Belyaev

			Excluded	$1 \Lambda (GeV)$ at 3	100 fb^{-1}
	Operators	Coefficient	$10 { m GeV}$	DM Mass 100 GeV	$1000 {\rm GeV}$
lex DM	C1 & C2	${1/\Lambda\over m_q/\Lambda^2}$	$\begin{array}{c} 1168 \\ 21 \end{array}$	$\begin{array}{c} 1115\\ 20 \end{array}$	267 6
lar	C3 & C4	$1/\Lambda^2$	1134	1131	662
C Cc	C5 & C6	$1/\Lambda^2$	2656	2611	1398
	D1 & D3	${1/\Lambda^2\over m_q/\Lambda^3}$	1386 78	1405 77	861 45
n DM	D2 & D4	${1/\Lambda^2\over m_q/\Lambda^3}$	$\frac{1426}{78}$	1399 78	$\begin{array}{c}1022\\53\end{array}$
mion	D1T & D4T	$1/\Lambda^2$	1217	1199	780
Ferr	D2T	$1/\Lambda^2$	1053	1052	670
irac	D3T	$1/\Lambda^2$	969	938	644
D	D5 & D7	$1/\Lambda^2$	1580	1591	1190
	D6 & D8	$1/\Lambda^2$	1608	1585	955
	D9 & D10	$1/\Lambda^2$	2613	2619	1580
	V1 & V2	${1/\Lambda \over m_q/\Lambda^2}$	1.57×10^{7} 1581	$156383 \\ 156$	992 11
V	V3 & V4	$1/\Lambda^2$	1.4×10^5	14240	1144
tor DN	V5 & V6	${1/\Lambda \over m_q/\Lambda^2}$	1.31×10^{7} 1778	$\begin{array}{c} 1.34\times10^5\\ 176\end{array}$	980 13
Vec	V7M & V8M	$1/\Lambda^2$	1.43×10^5	14223	1276
plex	V7P & V8P	$1/\Lambda^2$	11734	3660	870
lmo	V9M & V10M	$1/\Lambda^2$	11684	3716	1041
0	V9P & V10P	$1/\Lambda^2$	11690	3594	784
	V11 & V11A	$1/\Lambda^2$	$3.40 imes 10^5$	34210	2833

LHC@8TeV

NEX

LHC@8TeV

Distinguishing the DM operators: χ^2 for pairs of DM operators

 $\chi^{2} = \sum_{i=EM3, EM4, EM5, EM6, IM7} [(N1_{i} - \kappa \times N2_{i})/\delta BG_{i}]^{2} : \text{ if } \chi^{2} > 9.48 \text{ (95\%CL for 4 DOF)} - \text{ operators can be distinguished!}$

			Co	mplex S	Scalar I	DM	Dirac Fe	ermion DM					Complex Vector DM						
			10 (${\rm GeV}$	100	${\rm GeV}$	$10~{\rm GeV}$	$100~{\rm GeV}$		$10 \mathrm{GeV}$				100	GeV		1	1000 Ge	V
			C1	C5	C1	C5	D9	D9	V1	V3	V5	V11	V1	V3	V5	V11	V1	V5	V11
Complex Scalar	$10 \ { m GeV}$	C1 C5	0.0 25.26	33.68 0.0	1.35 17.84	36.36 0.07	51.38 1.8	63.44 4.56	37.57 0.41	50.0 1.4	73.55 7.29	$\begin{array}{c} 96.47\\ 15.09 \end{array}$	40.08 0.3	53.15 1.98	78.9 9.25	$\begin{array}{c} 102.08\\ 17.49 \end{array}$	43.68 0.68	76.83 8.28	$110.91 \\ 21.11$
DM	$100 \ { m GeV}$	C1 C5	1.29 27.1	22.62 0.07	0.0 19.36	24.69 0.0	37.85 1.51	48.21 4.0	26.33 0.38	36.4 1.04	57.02 6.52	$\begin{array}{c} 77.7\\ 13.97\end{array}$	28.09 0.18	39.16 1.59	62.03 8.42	$\begin{array}{c} 82.79\\ 16.3\end{array}$	31.16 0.47	60.21 7.5	90.71 19.79
Dirac Fermion _ DM	$10 \ { m GeV}$	D9	36.37	1.7	28.17	1.43	0.0	0.86	1.08	0.12	2.1	6.4	0.68	0.05	3.08	8.03	0.46	2.36	10.54
	$100 \ { m GeV}$	D9	43.14	4.13	34.48	3.64	0.82	0.0	3.4	1.03	0.3	2.91	2.54	0.63	0.77	3.92	2.32	0.62	5.64
		V1	27.87	0.41	20.54	0.37	1.13	3.71	0.0	0.92	6.13	12.87	0.18	1.37	7.72	15.16	0.25	6.63	18.64
	10	V3	35.62	1.33	27.27	0.99	0.12	1.08	0.89	0.0	2.44	7.22	0.45	0.07	3.6	8.94	0.3	2.9	11.57
	GeV	V5	48.96	6.47	39.92	5.82	1.98	0.3	5.5	2.28	0.0	1.38	4.44	1.66	0.14	2.06	4.05	0.18	3.32
		V11	61.93	12.92	52.45	12.03	5.81	2.75	11.14	6.51	1.33	0.0	9.91	5.41	0.72	0.1	9.04	0.91	0.5
Complex Vector	100	V1 V3	29.4 37.46	0.29 1.86	21.66 29.02	0.17	0.7	$2.74 \\ 0.65$	0.17	0.46	4.89	$11.32 \\ 5.94$	0.0	0.81	6.45 2.73	13.44	0.13 0.57	5.58 2.11	$16.66 \\ 9.91$
DM	GeV	V5	51.87	8.11	42.88	7.43	2.86	0.74	6.84	3.32	0.14	0.73	5.79	2.55	0.0	1.21	5.31	0.14	2.23
		V11	64.82	14.81	55.29	13.88	7.21	3.66	12.98	7.97	1.97	0.1	11.63	6.76	1.17	0.0	10.77	1.54	0.16
-	1000	V1	31.93	0.67	23.95	0.46	0.48	2.49	0.25	0.3	4.45	10.3	0.13	0.59	5.91	12.4	0.0	4.87	15.52
	GeV	V5	51.03	7.34	42.05	6.68	2.22	0.6	5.94	2.71	0.18	0.94	5.05	1.99	0.14	1.61	4.43	0.0	2.81
	001	V11	69.57	17.65	59.83	16.65	9.34	5.2	15.75	10.18	3.13	0.49	14.24	8.82	2.13	0.16	13.32	2.65	0.0

