WW scattering in a radiative electroweak symmetry breaking scenario [KE, K. Ishiwata and Y. Sumino, 1601.00696 (PRD)]

^(a)Department of Physics, Tohoku University <u>Kazuhiro Endo^(a)</u>, Koji Ishiwata^(b) and Yukinari Sumino^(a) ^(b)Institute for Theoretical Physics, Kanazawa University

> In a classically scale-invariant (CSI) SM with singlet scalars, electroweak-symmetry breaking (EWSB) is induced via Coleman-Weinberg (CW) -type potential and Higgs self-coupling is enhanced.

 $\gg W_1 W_1$ -scattering can be a good probe for the enhanced coupling.

 \succ " ξ -expansion" is introduced for systematic perturbation, ensuring special order-counting.

Model and analysis method 1.

$$\mathscr{L} = \mathscr{L}_{\rm SM}|_{\mu_H=0} + \frac{1}{2} (\partial_\mu \vec{S})^2 - \lambda_{HS} (H^{\dagger} H) (\vec{S} \cdot \vec{S}) - \frac{\lambda_S}{4} (\vec{S} \cdot \vec{S})^2$$

 \diamond EWSB via CW mechanism

3. $W_{I}W_{I}$ -scattering

- \diamond <u>Goldstone-boson self-coupling also enhances</u>.
- -> Vector-boson scattering becomes a good probe at high-energy [Equivalence theorem].

- \diamond Singlet scalar S as global-O(N) multiplet.
- \diamond Tree effect contributes at the same order as 1-loop effects.
 - -> Special order-counting

- \diamond Auxiliary expansion parameter ξ for systematic perturbation.
- -> The counting is ensured in each order. (e.g.) quantity $A(\xi)$ of $O(\xi^n)$ $A(\xi) = \xi^n (a_0 + \xi a_1 + \xi^2 a_2 + \cdots)$

CSI model

 \diamond One of the main targets of the 2nd run of LHC.

 \diamond To take wider kinematical region into account, apply ξ -expansion to Feynman rules; determine parameters and check their consistency up to $O(\xi^2)$.

 \Rightarrow In N = 1 case for $W_{l}^{+}W_{l}^{+}$ and $W_{l}^{+}W_{l}^{-}$ -scatterings, we calculate scattering amplitudes and differential cross sections.

<u>N = 1</u>

2. Vacuum structure as scalar couplings

\Leftrightarrow EWSB is induced at $O(\xi^2)$

- **\therefore** Large λ_{HS} , but still in perturbative regime.
- (Singlet VEV) = $0 \rightarrow \text{unbroken } O(N)$
- Singlet is stable. -> dark matter
- Substantial parameters: $(\lambda_{H}, \lambda_{HS})$. **

0						
-5-						
-10						
$-15\frac{1}{0}$	100	200	300	400		
ϕ [GeV]						
SM	fixed-order	LL	imp-NLO)		
	N =	1 N =	4 <i>N</i> =	= 12		
SM couplings (except λ_H) unchanged.						
$\lambda_H(v)$	-0.1	1 - 0.00	45 0.0)75		
$\lambda_{HS}(v$) 4.8	2.4	1	.4		
$\langle \varphi \rangle$	0	0	(0		
m_s [Ge]	V] 556	378	28	85		

 \diamond Couplings among the scalars

- BSM (singlet) effect appears as off-shell-Higgs effect. [Technically, just replacing Higgs propagator: SM <-> CSI] Amplitudes' behaviour: ✓ Gauge cancellation
- \diamond Cross sections enhance: at $\sqrt{s} = 2$ TeV,

 $W_{1}^{+}W_{1}^{+} \rightarrow \text{deviates 87\%}$ (25%) at $\cos\theta = 0$ (0.8) $W_{I}^{+}W_{I}^{-} \rightarrow \text{deviates 90\%}$ (29%) at $\cos\theta = 0.5$ (0.8)

Taylor series around the vacuum:

- Higgs self-couplings enhance due to the characteristic potential structure.
- The other couplings are relatively large.

	N = 1	N = 4	N = 12
$\lambda_{hhh}/\lambda_{hhh}^{({ m SM})}$	1.8	1.7	1.6
$\lambda_{hhhh}/\lambda_{hhhh}^{({ m SM})}$	4.3	3.2	2.8
λ_{hss}	10	5.0	3.0
λ_{hhss}	13	5.7	3.2
λ_{ssss}	6.5	1.9	0.9

Conclusion 4.

- \Rightarrow In W, W, -scattering, deviation from SM prediction is 90% at $\cos\theta \approx 0$ and 25% at forward region.
- \diamond By virtue of ξ -expansion, BSM contribution is correctly

considered; equivalence theorem and gauge

cancellation are satisfied.