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Abstract : In the inflationary Universe, the vacuum field fluctuations 〈δφ2〉 enlarge in proportion to the Hubble scale H . Therefore, the large inflationary vacuum
fluctuations of the Higgs field 〈δφ2〉 are potentially catastrophic to trigger the electroweak vacuum transition of the Universe. Thus, we revisit the electroweak vacuum
instability from the perspective of the dynamical behavior of the global Higgs field φ determined by the effective potential Veff

(
φ

)
on de-Sitter spacetime and the

renormalized vacuum field fluctuations 〈δφ2〉ren via adiabatic regularization and point-splitting regularization. In the simple scenario, the electroweak vacuum stability
is inevitably threatened by the dynamical behavior of the global Higgs field φ, or the formations of Anti-de Sitter (AdS) domains or bubbles.

1 Electroweak Vacuum Stability

The recent LHC experiments of the Higgs boson mass
mh = 125.09±0.21(stat)±0.11(syst) GeV and the top quark
mass mt = 172.44±0.13(stat)±0.47(syst) GeV suggest that
the electroweak vacuum is metastable and finally cause a
catastrophic vacuum decay through quantum tunneling.

Is the electroweak vacuum dead or alive ?

107 108

109

1010

1011

1012

1013

1014

1016

120 122 124 126 128 130 132
168

170

172

174

176

178

180

Higgs pole mass Mh in GeV

T
o
p

p
o
le

m
as

s
M

t
in

G
eV

1017

1018

1019

1,2,3 Σ

Instability

Stability

Meta-stability

6 8 10

0 50 100 150 200

0

50

100

150

200

Higgs pole mass Mh in GeV

T
o
p

p
o
le

m
as

s
M

t
in

G
eV

LI =104GeV
5

6
7

8
9
10

12
14

16
19

Instability

N
o
n

-
p
ertu

rb
ativ

ity

Stability

Meta
-sta

bilit
y

104

104

104

104

6

6

6

68

8

8

8

10

10 10

10

12

12

12

12

14

14

1414

16

16 1618 18

18

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

0.0

0.2

0.4

0.6

0.8

Higgs coupling ΛHMPlL

G
au

g
e

co
u
p
li

n
g

g
2

HM
P

lL
µ

g
1

HM
P

lL

SM

No EW vacuum

Stability

In
st

ab
il

it
y

Meta-
stability

[1] D. Buttazzo, G. Degrassic, P. P. Giardino, G. F. Giudice, F.
Sala, A. Salvio, A. Strumia, JHEP 1312 (2013).
Fortunately, the vacuum decay timescale is longer than the
age of our Universe. However, the recent investigations re-
veal that the electroweak vacuum metastability is incom-
patible with the large-scale inflation.

The inflationary vacuum fluctuations 〈δφ2〉

〈δφ2〉1/2 ≈ H

2π
& ΛI ≈ 1011 GeV

=⇒ CATASTROPHE

However, the above estimation as the Fokker-Planck equa-
tion or the Hawking-Moss instanton are rough. In this
talks, we present the electroweak vacuum instability on
the inflationary Universe from the rigid perspective of the
quantum field theory (QFT) in curved spacetime.

2 Renormalized Vacuum Field

Fluctuations and Effective Potential

on de-Sitter Spacetime

The Higgs potential on de-Sitter Spacetime

V
(
φ

)≡ 1

2

(
m2+ξR

)
φ2+λ

4
φ4+λφS

2
φ2S2+ α6φ

6

8Λ2
UV

+ α8φ
8

16Λ4
UV

· · ·

where ξ is the non-minimal curvature coupling.

From the bare (unrenormalized) action with the
potential V

(
φ

)
, the Klein-Gordon equation for the

Higgs field can be given by

The Klein-Gordon equation for the Higgs field

�φ
(
η, x

)+m2φ
(
η, x

)+ξRφ
(
η, x

)+λφ3 (
η, x

)= 0

where�= gµν∇µ∇ν = 1/
p−g∂µ

(p−g∂µ
)
.

We decompose φ into classic fields and quantum
fields as φ = φ

(
η, x

)+δφ(
η, x

)
where 〈0|δφ(

η, x
) |0〉 =

0. The quantum fieldδφ can be decomposed into each
k modes by

δφ
(
η, x

)= ∫
d 3k

(
akδφk

(
η, x

)+a†
kδφ

∗
k

(
η, x

))
(1)

where the in-vacuum state |0〉 is defined by ak |0〉 = 0
and corresponds to the initial conditions of the mode
functions δφk .

The vacuum field fluctuations 〈δφ2〉

〈0|δφ2 |0〉 =
∫

d 3k
∣∣δφk

(
η, x

)∣∣2,

= 1

2π2a2
(
η
) ∫ ∞

0
dkk2

∣∣δχk
(
η
)∣∣2

where δφk

(
η, x

)= e i k·xδχk
(
η
)

/(2π)3/2a
(
η
)
.

The vacuum field fluctuations 〈δφ2〉 have ultravio-
let (quadratic and logarithmic) divergences, which re-
quire a regularization, e.g. cut-off regularization or di-
mensional regularization, and must be cancelled by
the counterterms of the couplings.

The Klein-Gordon equation for δχ
(
η
)

δχ′′k
(
η
)+Ω2

k

(
η
)
δχk

(
η
)= 0,

Ω2
k

(
η
)= k2 +a2 (

η
)(

m2 +3λφ2 + (ξ−1/6)R
)

The mode function δχ
(
η
)

can be rewritten by Bo-
goliubov coefficients αk

(
η
)
, βk

(
η
)

as

δχk
(
η
)= 1√

2Ωk
(
η
) {
αk

(
η
)
δϕk

(
η
)+βk

(
η
)
δϕ∗

k

(
η
)}

,

where αk
(
η
)

and βk
(
η
)

satisfy the Wronskian condi-

tion
∣∣αk

(
η
)∣∣2 − ∣∣βk

(
η
)∣∣2 = 1. The initial conditions for

αk
(
η0

)
and βk

(
η0

)
are equivalent to the choice of the

in-vacuum state. The vacuum field fluctuations 〈δφ2〉
of the Higgs field can be written by

〈δφ2〉 = 1

4π2a2
(
η
) ∫ ∞

0
dkk2Ω−1

k

{
1+2

∣∣βk
∣∣2

+αkβ
∗
kδϕ

2
k +α∗

kβkδϕ
∗
k

2
}

For convenience, we introduce the following quanti-
ties nk = ∣∣βk

∣∣2 and zk =αkβ
∗
kδϕ

2
k where nk = ∣∣βk

(
η
)∣∣2

can be interpreted as the particle number density.

The vacuum field fluctuations 〈δφ2〉

〈δφ2〉 = 〈δφ2〉(static) +〈δφ2〉(dynamic)

with

〈δφ2〉(s) = 1

4π2a2
(
η
) ∫ ∞

0
dkk2Ω−1

k

〈δφ2〉(d) = 1

4π2a2
(
η
) ∫ ∞

0
dkk2Ω−1

k {2nk +2Rezk }

where 〈δφ2〉(d)
corresponds to the particle pro-

duction effects of the de-Sitter background.

The divergences of 〈δφ2〉(s)
are the same as the di-

vergences in the Minkowski spacetime. Thus, by using
the dimensional regularization, we obtain the follow-
ing regularized expression as

The vacuum field fluctuations 〈δφ2〉(s)

〈δφ2〉(s) = M 2
(
φ

)
16π2

[
ln

(
M 2

(
φ

)
µ2

)
− 1

ε
− log4π−γ− 3

2

]

with

M 2 (
φ

)= m2 (
µ
)+3λ

(
µ
)
φ2 + (

ξ
(
µ
)−1/6

)
R,

where µ is the renormalization-scale and γ is
the Euler-Mascheroni constant.

These divergences can be canceled by the coun-
terterms δm2, δξ and δλ as follows

Thus, the renormalized vacuum field fluctuations
of the Higgs field can be given by

〈δφ2〉(s)
ren = M 2

(
φ

)
16π2

[
ln

(
M 2

(
φ

)
µ2

)
− 3

2

]
,

From the above renormalized vacuum field fluctua-
tions 〈δφ2〉(s)

ren, we can construct the one-loop effective
potential on de-Sitter spacetime as follows

The one-loop effective potential

Veff
(
φ

)=1

2
m2 (

µ
)
φ2 + 1

2
ξ
(
µ
)

Rφ2 + λ
(
µ
)

4
φ4

+ M 2
(
φ

)
16π2

[
ln

(
M 2

(
φ

)
µ2

)
− 3

2

]

Strictly speaking, we must embed the dynamical
vacuum field fluctuations from the particle produc-
tion effects into the effective potential. In large mass,
large momentum mode or slow varying background,
we can generally use the adiabatic (WKB) expansion
method which is valid in∣∣Ω′

k /Ω2
k

∣∣¿ 1 or H ¿ M
(
φ

)
By using the adiabatic (WKB) expansion method, nk

and zk can be approximated as follows:

The adiabatic (WKB) expansion of nk and zk

nk = n(2)
k +n(4)

k +·· · , Rezk = Rez(2)
k +Rez(4)

k +·· ·

The high-order expressions are given by

n(2)
k = 1

16

Ω′2
k

Ω4
k

, Rez(2)
k = 1

8

Ω′′
k

Ω3
k

− 1

4

Ω′2
k

Ω4
k

n(4)
k =−Ω

′
kΩ

′′′
k

32Ω6
k

+ Ω′′2
k

64Ω6
k

+ 5Ω′2
kΩ

′′
k

32Ω7
k

− 45Ω′4
k

256Ω8
k

,

Rez(4)
k =− Ω

′′′′
k

32Ω5
k

+ 11Ω′
kΩ

′′′
k

32Ω6
k

− 115Ω′2
kΩ

′′
k

64Ω7
k

+ 7Ω′′2
k

32Ω6
k

+ 45Ω′4
k

32Ω8
k

The second (adiabatic) order expressions of the vac-
uum field fluctuations are given by

〈δφ2〉(2) = 1

16π2a2
(
η
) ∫ ∞

0
dkk2Ω−1

k

{
Ω′′

k

Ω3
k

− 3

2

Ω′
k

Ω4
k

}

Therefore, in the adiabatic case H ¿ M
(
φ

)
, we have

the dynamical vacuum field fluctuations as follows:

〈δφ2〉(dynamic) = R

288π2
+O

(
R2)+·· ·

The adiabatic regularization is the extremely pow-
erful method to obtain the dynamical vacuum fluctu-
ations even in the non-adiabatic case.

The adiabatic regularization method

〈δφ2〉(dynamic) = 〈δφ2〉−〈δφ2〉(static)

= 1

4π2a2
(
η
) ∫ ∞

0
dkk2Ω−1

k {2nk +2Rezk }

= 1

4π2a2
(
η
) [∫ ∞

0
dk2k2

∣∣δχk
∣∣2 −

∫ ∞

0
dkk2Ω−1

k

]
where we must determine exactly δχ

(
η
)
.

If we consider the massive non-minimally coupled
case M

(
φ

)¿ H and take the exact Bunch-Davies vac-
uum in de Sitter spacetime, the corresponding mode
function of δχ

(
η
)

can be given by

δχk
(
η
)=√

π

4
η1/2H (1)

ν

(
kη

)
ν=

√
9/4−M 2

(
φ

)
/H 2

where H (1)
ν is the Hankel function of the first kind. By

using the adiabatic regularization, the dynamical vac-

uum fluctuations of 〈δφ2〉(d)
on the de Sitter spacetime

can be given as follows:

〈δφ2〉(dynamic) ' 3H 4

8π2M 2
(
φ

) ,
(
M

(
φ

)¿ H
)

In the de Sitter spacetime, the dynamical (renormal-

ized) vacuum field fluctuations 〈δφ2〉(d)
via the adia-

batic regularization can be summarized as follows

The vacuum field fluctuations 〈δφ2〉(d)

〈δφ2〉(dynamic) '


H 3t/4π2,

(
M

(
φ

)= 0
)

3H 4/8π2M 2
(
φ

)
,

(
M

(
φ

)¿ H
)

H 2/24π2.
(
M

(
φ

)
&H

)

The destiny of the electroweak false vacuum on de-
Sitter background is determined by the dynamics of
the background Higgs field φ (t ) and the vacuum fluc-

tuations of the Higgs field 〈δφ2〉(d)
. The one-loop ef-

fective evolution equation of the Higgs field can be
given as follows

φ̈+3Hφ̇+ ∂Veff
(
φ

)
∂φ

= 0,

where the one-loop standard model Higgs potential in
de-Sitter spacetime can written as

The one-loop standard model Higgs potential

Veff
(
φ

)= 1

2
m2(µ)φ2 + 1

2
ξ(µ)Rφ2 + λ(µ)

2
〈δφ2〉(d)

φ2

+ λ(µ)

4
φ4 +

9∑
i=1

ni

64π2
M 4

i

(
φ

)[
log

M 2
i

(
φ

)
µ2

−Ci

]
.

where M 2
i

(
φ

)= κiφ
2 +κi 〈δφ2〉(d) +κ′i +θi R

The running of m2(µ), ξ(µ) and λ(µ) vary depend-
ing on µ which corresponds to the energy scale of the
phenomenological environment. Now, we can take

µ2 ≈ φ2 + R + 〈δφ2〉(d)
. In particular, the Higgs self-

couplingλ(µ) becomes negative at the high-scaleΛI ≈
1011 GeV. Therefore, if µ ≈ (R +〈δφ2〉(d)

)
1/2 > ΛI , the

quartic term λ(µ)φ4/4 becomes negative and destabi-
lizes the Higgs effective potential.

The renormalization scale

µ≈ (R +〈δφ2〉(d)
)

1/2
& ΛI ≈ 1011 GeV

=⇒ λ(µ)φ4

4
< 0

3 Electroweak Vacuum Instabil-

ity during Inflation

The inflationary vacuum fluctuations of the Higgs field
〈δφ2〉 destabilize the effective Higgs potential Veff

(
φ

)
as

the backreactions or generate the Anti-deSitter (AdS) do-
mains or bubbles. These unwanted phenomena trigger off
a catastrophic vacuum transition to the Planck-energy true
vacuum and cause an immediate collapse of the Universe.

The two catastrophic scenarios during inflation

In the scale µ ≈
(
R +〈δφ2〉(d)

)1/2
& ΛI , the Higgs

self-coupling λ
(
µ
)

becomes negative where λ(µ) '
−0.01 and the destabilization of Veff

(
φ

)
can be deter-

mined by the following mass terms.∣∣∣∣1

2
ξ(µ)Rφ2

∣∣∣∣ ≷ ∣∣∣∣λ(µ)

2
〈δφ2〉(d)

φ2
∣∣∣∣

In the de-Sitter spacetime, the destabilization condi-
tion of Veff

(
φ

)
can be given by

The destabilization of Veff
(
φ

)

(R +〈δφ2〉(d)
)

1/2
& ΛI , ξ(µ)R < ∣∣λ(µ)

∣∣〈δφ2〉(d)

=⇒ CATASTROPHE

During inflation, we can obtain the condition of the
non-minimal coupling as ξ(µ)&O

(
10−3

)
not to desta-

bilize Veff
(
φ

)
. If ξ(µ) does not satisfy the condition,

Veff
(
φ

)
is destabilized, the coherent Higgs field φ (t )

goes out to the Planck-energy vacuum.
On the other hand, if the inhomogeneous and local

Higgs fields expressed by the vacuum Higgs field fluc-
tuations 〈δφ2〉 overcome the hill of Veff

(
φ

)
, the catas-

trophic Anti-de Sitter (AdS) domains are formed.

The Anti-de Sitter (AdS) domains

Although not all AdS domains threaten the exis-
tence of the Universe, some AdS domains expand, eat-
ing other regions of the electroweak vacuum and con-
sume the entire Universe.

In order to estimate the population of AdS do-
mains, we consider the Gaussian distribution function
of 〈δφ2〉(d)

as follows:

P
(
φ,〈δφ2〉(d)

)
= 1√

2π〈δφ2〉(d)
exp

(
− φ2

2〈δφ2〉(d)

)
.

The probability not to produce AdS domains

P
(
φ<φmax

)≡ ∫ φmax

−φmax

P
(
φ,〈δφ2〉(d)

)
dφ,

= erf

 φmax√
2〈δφ2〉(d)


The probability that the localized Higgs fields roll

down into the true vacuum can be given by

P
(
φ>φmax

)= 1−erf

 φmax√
2〈δφ2〉(d)

 ,

'
√

2〈δφ2〉(d)

πφmax
exp

(
− φ2

2〈δφ2〉(d)

)
.

The vacuum decay probability of the Universe can
be expressed as

e3Nhor P
(
φ>φmax

)< 1,

where e3Nhor corresponds to the physical volume of
our Universe at the end of the inflation and we can
take the e-folding number Nhor ' NCMB ' 60.

The inflationary electroweak vacuum stability

〈δφ2〉(d)

φ2
max

< 1

6Nhor
.

During inflation, we can obtain the restriction of
the non-minimal coupling ξ(µ)&O

(
10−2

)
not to gen-

erate the unwanted AdS domains or bubbles. There-
fore, if the relatively large non-minimal Higgs-gravity
coupling or the Higgs-inflaton coupling are intro-
duced, the Higgs metastability vacuum can be safe
during the inflation.

The constraint of ξ(µ)

• Hinf&ΛI and ξ(µ).O
(
10−3

)
=⇒ Destabilized

• Hinf&ΛI and O
(
10−3

)
. ξ(µ).O

(
10−2

)
=⇒ AdS domains

• Hinf.ΛI or O
(
10−2

)
. ξ(µ) =⇒ Stable

4 Electroweak Vacuum Instabil-

ity after Inflation

The destabilization or the catastrophic AdS domains from
the high-scale inflation can be avoided if O

(
10−2

)
. ξ(µ).

However, after inflation, ξ(µ)R drops rapidly and some-
times become negative. Therefore, the effect of the stabi-
lization via ξ(µ)R disappears and the Higgs effective poten-
tial becomes rather unstable. Furthermore, ξ(µ)R can gen-
erate the large Higgs field vacuum fluctuations via tachy-
onic resonance during subsequent preheating stage.

The two catastrophic scenarios after inflation

Just after inflation, the inflaton field S begins co-
herently oscillating near the minimum of the infla-
ton potential Vinf (S) and produces extremely a huge
amount of particles via the parametric or the tachy-
onic resonance.

The coherently oscillation of the inflaton

We approximate the inflaton potential as the
quadratic form

Vinf (S) = 1

2
m2

SS2.

The inflaton field S classically oscillates as

S (t ) =Φsin(mS t ), Φ=
√

8

3

Mpl

mS t
,

where the reduced Planck mass is Mpl = 2.4×1018 GeV.
If the inflaton field S dominates the energy density of
the Universe, the scalar curvature R(t ) is written by

The scalar curvature R(t )

R (t ) = 1

M 2
pl

[
4Vinf (S)− Ṡ2] ,

' m2
SΦ

2

M 2
pl

(
3sin2 (mS t )−1

)

If the oscillation time-scale t ' 1/mS is rela-
tively long, the curvature term ξ(µ)R (t ) can accelerate
catastrophic motion of the coherent Higgs field φ (t ).
The coherent Higgs field φ (t ) can be described as

φ (t ) 'φend ·e
(
3ξ(µ)H 2

end

)
t/3Hend ,

'φend ·e(ξ(µ)Hend/mS),

where φend ' 〈δφ2〉(d) ' O
(
H 2

end

)
. Therefore, if we

have φ (t ) > φmax ' 10Hend
√

3ξ(µ), the almost Higgs
fields φ (t ) produced at the end of the inflation go out
to the Planck-scale true vacuum.

The constraint from Higgs field φ (t )

Hend/mS & (log10
√

3ξ
(
µ
)
)/ξ

(
µ
)

That conclution depends strongly on ξ(µ), t '
1/mS and Hend. However, large ξ(µ) destabilizes the
behavior of the coherent Higgs field after inflation.

The general equation for k modes of the Higgs field
during preheating is given as follows:

d 2
(
a3/2δφk

)
d t 2

+
(

k2

a2
+V ′

eff

(
φ

)+ 1

M 2
pl

(
3

8
−ξ

)
Ṡ

− 1

M 2
pl

(
3

4
−4ξ

)
Vinf (S)

)(
a3/2δφk

)= 0.

The Mathieu equation

d 2
(
a3/2δφk

)
d z2

+ (
Ak −2q cos2z

)(
a3/2δφk

)= 0

where z = mS t and Ak and q are given as

Ak = k2

a2m2
S

+ V ′
eff

(
φ

)
m2

S

+ Φ2

2M 2
pl

ξ,

q = 3Φ2

4M 2
pl

(
ξ− 1

4

)
.

The solutions of the Mathieu equation via ξ(µ)
show the tachyonic (broad) resonance when q & 1,
i.e. Φ2ξ & M 2

pl or the narrow resonance when q < 1,

i.e. Φ2ξ < M 2
pl. If we take mS ' 7×10−6M 2

pl assuming
chaotic inflation, we can numerically obtain the con-
dition of the tachyonic resonance as ξ(µ)&O (10).

The Mathieu equation

1 10 100 1000 104 105
1010

1011

1012

1013

1014

1015

1016

z=mϕt

〈h
2
〉1
/2

1 10 100 1000 104 105
1010

1011

1012

1013

1014

1015

1016

z=mϕt

〈h
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The left figure takes the non-minimal Higgs-gravity
coupling as ξ(µ) = 101.4,101.6,101.8 and the right
figure takes the inflaton-Higgs coupling as λφS =
10−4.4,10−4,10−3.6. The vacuum field fluctuations o
the Higgs field can be summarized as〈δφ2〉(d) ÀO

(
H 2 (t )

)
,

(
Φ2ξ&M 2

pl

)
〈δφ2〉(d) 'O

(
H 2 (t )

)
.

(
Φ2ξ< M 2

pl

)
The constraint of ξ(µ)

• Hend/mS & (log10
√

3ξ
(
µ
)
)/ξ

(
µ
)

=⇒ Catastrophic

• Φ2ξ&M 2
pl (tachyonic resonance regime)

=⇒ Destabilized

• Φ2ξ< M 2
pl (narrow resonance regime)

=⇒ Stable

5 Conclusion and Discussion

The relative large non-minimal Higgs-gravity coupling
ξ(µ) & O

(
10−2

)
can stabilize the effective Higgs potential

and suppress formations of AdS domains or bubbles dur-
ing inflation. However, after inflation, ξ(µ)R drops rapidly,
sometimes become negative and lead to the exponential
growth of the coherent Higgs field φ (t ), or the large Higgs
vacuum fluctuations via the tachyonic resonance. There-
fore, ξ(µ) cannot prevent the catastrophic scenario.

Inflationary Electroweak Vacuum Instability

• mh ≈ 125.09 GeV and mt ≈ 172.44 GeV

• H &ΛI ≈ 1011 GeV

• V
(
φ

)≡ 1
2

(
m2+ξR

)
φ2+ λ

4φ
4+λφS

2 φ
2S2+ α6φ

6

8Λ2
UV
+ α8φ

8

16Λ4
UV
· · ·

=⇒ CATASTROPHE

After all, if H >ΛI , the safety of our electroweak vacuum is
inevitably threatened during inflation or after inflation. We
can avoid this situation by assuming the inflationary sta-
bilization via λφS or the high-order corrections from GUT
or Planck-scale new physics etc. In any case, however, the
electroweak vacuum instability from inflation gives tight
constraints on the beyond the standard model.


