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j Early matter-dominated period

_—_

® |n some models, non-relativistic particles (oscillating scalar fields,
e.g., moduli) can dominate the Universe at some point after the
inflaton reheating.

® There exists an early matter(like)-dominated era.

® After the early matter-dominated era, the Universe becomes
radiation-dominated again.

® |n this case, the reheating temperature could be low.
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j Bounds on the low-reheating temperature

_—_

® Big bang nucleosynthesis (BBN)

[Kawasaki, Kohri, Sugiyama astro-ph/981 | 1437;0002127]

If large entropy production occurs at around BBN, a large fraction of
neutrino cannot be thermalized (distribution function of neutrinos are
affected.)

Treh Z 0.7 MeV

(95% C.L)

1en Z 25 — 4.0 MeV [hadronic decay]

(for the hadronic branching ratio B, = 1072 — 1)



j Bounds on the low-reheating temperature

_—_

® CMB (+BBN)

[de Salas et al., I511.00672]

If large entropy production occurs at around BBN, a large fraction of
neutrino cannot be thermalized (distribution function of neutrinos are
affected.)

In the CMB analysis, we can also constrain the following quantities:

Tren = 4.7 MeV [Planck2015TT+ lowP] (95% C.L)



j Bounds on the low-reheating temperature

_—_

[K.Y.Choi, TT in prep.]

Ultracompact mihihalos (UCMHs):

- DM halo undergoes collapse shortly after the recombination.
- denser than later forming minihalos.

- have a steep density profile p p—9/4

UCMHs may lead to some astrophysical signature.



j Value of ® to form UCMHs

® Large dark matter perturbation 0 leads to the formation of:

- Primordial black holes (PBH)
§>0.3—0.7

o2 1072  (Even if the DM perturbation is not so large enough to PBH,
it will lead to a compact cloud of dark matter.)

- Gamma ray

- Pulsar timing

- Gravitational lensing



j Minimum value of ©

_—

® Minimum value of d to form UCMHs 6"

(for the case w/o an early MD era)
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j Evolutions of density perturbations

_—

® Background evolution
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Evolutions of density perturbations

® Perturbation equations (conformal Newtonian gauge)
[See e.g., Ma, Bertschinger 1995; Choi, Gong, Shin 1507.03871]
5,0a

- Density perturbation 4, ;

a
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- Velocity perturbation
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j Evolution of DM density fluctuations opw
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® Standard case (no early MD era)
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j Evolution of DM density fluctuations opw
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® Case with an early MD era
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The longer the early MD era is, 0 is more enhanced.



w Ultracompact minihalos: Gamma ray constraint

_—

[Scott, Sivertsson 0908.4082; Josan Green 1006.4970; Bringmann, Scott, Akrami | | 10.2484]

® Assume that DM is in the form of WIMP.

® Gamma rays from DM annihilation in UCMHs may be observable.

® Non-observations of such a signal gives a constraint on
the abundance of UCMHs.

® The abundance depends on the size (growth) of DM
perturbations.



j Abundance of UCMHs

_—

® Abundance of UCMHs is characterized by the fraction
of the local UCMH mass:

Present mass of UCMHs inside

/the comoving size R

0 Mycmn

/ AN

Probability of forming UCMHSs from
the region with comoving size R

_ QuomHe
= oot _

Mass inside the comoving size R

.. : : 4
- Mass inside the comoving radius R: M; ~ [gpx(a)Rf;hyS]
R=1/(aH)
I + zeq
- Present mass of UCMHs: Mucwmu(z) = M;

1+ z



Abundance of UCMHs

® Probability (assuming that O obeys a Gaussian distribution)
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( 5;1&}(, @nin are the maximum and minimum value of d to form UCMHs.)

. oC dk
- Mass variance; OX(R)2 :/ Wt%p_hat(kR)Pa(k,t)? Top-hat window function
0 : : , , .

0.01 0.1 1 10 100 1000



j Minimum value of

_—_

® Minimum value of O to form UCMHs 5;“1“

(for the case w/o an early MD era)

> scale factor




Minimum value of ®
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® Minimum value of ® to form UCMHs 5;““1

(for the case w/ an early MD era)
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j Constraints on the low-reheating temperature

_—

® When duration of the early MD era is longer, DM fluctuations
experiences more growth (more enhancement).

The 2nd reheating occurred earlier, longer the duration

® The duration of the early MD era is also constrained.

AN

Hubble parameter at
the reheating

Hubble parameter at the
beginning of the early MD



j Constraint on the abundance from Gamma ray

_—

® Minimum value of ® to form UCMHs 5;?“1

- Standard case (w/o an early MD era): 5;11“ ~ 107°

- Case with an early MD era:

Due to the growth after horizon entry, 5;}0111 can be smaller
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Constraint on the abundance from Gamma ray

® Constraints on the UCMH mass fraction from Fermi-LAT
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jConstraints on primordial power spectrum
—
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Constraints on primordial power spectrum
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j Constraints on the low-reheating temperature

® Fermi constraint (WIMP case):
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j Free-streaming

_—_

® Fluctuations are erased due to free-streaming effect on small scales:

(DM particles can free-stream after the kinetic decoupling.)

t 1
v de da
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j Constraints on the low-reheating temperature

_—

® Fermi constraint (WIMP case):
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j Other probes of UCMHs

e UCMHSs can be probed gravitationally from:

- Astrometric microlensing f <01
[Li, Erickcek, Law 1202.1284]

- Small-scale gravitational lensing [ < 0.01
[Zackrisson et al., 1208.5482]

- Pulsar timing  f < 0.01

[Clark, Lewis, Scott 1509.02938]

These methods are model-independent.



Pulsar timing constraint
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j Constraints on the low-reheating temperature

® Pulsar constraint
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j Summary

_—_

® The reheating temperature is an important quantity to
understand the physics of the early Universe.

® Density fluctuations of dark matter grow with time during
the early MD era.

® |f small scale structure is enhanced, a lot of UCMHSs can be formed,
whose number is constrained by astrophysical observations.

® Low-reheating temperature can be constrained from the viewpoint
of dark matter fluctuations, which can be severer (for some cases)
than any other known constraints.



