Signals at LHC and dark matter in a supersymmetric left-right model

Katri Huitu University of Helsinki

Outline:

Motivation

Supersymmetric left-right model (SUSYLR)

Dark matter in SUSYLR

Signals of SUSYLR DM at LHC

Summary

M. Frank, B. Fuks, KH, S.K. Rai, H. Waltari, arXiv:1702.02112 M. Frank, D. Ghosh, KH, S.K. Rai, I. Saha, H. Waltari, PRD 90 (2014) 115021, arXiv:1408.2423

Motivation

Dark matter remains well established but completely unknown.

Supersymmetric models have many candidates (neutralino, sneutrino, gravitino, axino). In some models constraints are strong.

In addition to the lightest *neutralino*, a *right-handed sneutrino* is a good possibility.

Note: left-handed sneutrino is excluded as DM: due to the coupling to Z it annihilates too much in the early universe

Add right-handed neutrino superfields generate neutrino masses In **MSSM** or **NMSSM** singlet right-handed neutrino superfields can be added;

Right sneutrinos always present in left-right supersymmetric (**SUSYLR**) models: right-handed fermions are in doublets similarly than the left-handed fermions

Since the right-handed neutrino belongs to the same doublet than the right-handed charged lepton, always three right sneutrinos

Based on $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y$

Many problems of MSSM can be solved in SUSYLR :

neutrinos massive, spontaneous parity violation, no explicit R-parity violation, strong CP-violation ok, SUSY CP phases ok, ...

Mohapatra, Senjanovic PRL (1980);Kuchimanchi, Mohapatra PRD 48 (1993); Martin PRD 46 (1992); KH, Maalampi PLB (1995); Mohapatra, Rasin, PRL (1996), PRD (1996); Babu, Mohapatra PLB 668 (2008); Frank, Korutlu PRD 83 (2011); ...

2.3.2017

SUSYLR: $SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$

-Gauge symmetry could originate from SO(10) or E₆ unified model

-B-L as gauge symmetry \blacksquare Lagrangian conserves $R_{parity} = (-1)^{3(B-L)+2s}$

New gauge bosons: W_R , W_L , Z', Z, γ

Matter:

$$(Q_L)^i = \begin{pmatrix} u_L^i \\ d_L^i \end{pmatrix} = (3, 2, 1, \frac{1}{3}), \qquad (Q_R)^i = \begin{pmatrix} d_R^i \\ -u_R^i \end{pmatrix} = (\bar{3}, 1, 2^*, -\frac{1}{3})$$
$$(L_L)^i = \begin{pmatrix} \nu_L^i \\ \ell_L^i \end{pmatrix} = \stackrel{|}{}(1, 2, 1, -1), \qquad (L_R)^i = \begin{pmatrix} \ell_R^i \\ -\nu_R^i \end{pmatrix} = (1, 1, 2^*, 1),$$
$$Q = l_{3L} + l_{3R} + \frac{B - L}{2}$$

Two step breaking $SU(2)_R \times U(1)_{B-L} \xrightarrow{M_R} U(1)_Y$, $SU(2)_L \times U(1)_Y \xrightarrow{M_W} U(1)_{em}$

Choose symmetry breaking scalars in such a way that R-parity conserving vacuum is the minimum

$$\begin{split} & \begin{tabular}{ll} \label{eq:LSP is a dark matter candidate} \\ & \end{tabular} \Phi_1 = \begin{pmatrix} \phi_1^+ & \phi_1^0 \\ \phi_1^0 & \phi_1^- \end{pmatrix} = (1,2,2^*,0) \;, \qquad \Phi_2 = \begin{pmatrix} \varphi_2^+ & \varphi_2^0 \\ \varphi_2^{0'} & \varphi_2^- \end{pmatrix} = (1,2,2^*,0) \;, \\ & \end{tabular} \Delta_{1L} = \begin{pmatrix} \frac{\delta_{1L}^-}{\sqrt{2}} & \delta_{1L}^0 \\ \delta_{1L}^- & -\frac{\delta_{1L}^-}{\sqrt{2}} \end{pmatrix} = (1,3,1,-2) \;, \qquad \Delta_{2L} = \begin{pmatrix} \frac{\delta_{2L}^+}{\sqrt{2}} & \delta_{2L}^+ \\ \delta_{2L}^0 & -\frac{\delta_{2L}^+}{\sqrt{2}} \end{pmatrix} = (1,3,1,2) \;, \\ & \end{tabular} \Delta_{1R} = \begin{pmatrix} \frac{\delta_{1R}^-}{\sqrt{2}} & \delta_{1R}^0 \\ \delta_{1R}^- & -\frac{\delta_{1R}^-}{\sqrt{2}} \end{pmatrix} = (1,1,3,-2) \;, \qquad \Delta_{2R} = \begin{pmatrix} \frac{\delta_{2R}^+}{\sqrt{2}} & \delta_{2R}^+ \\ \delta_{2R}^0 & -\frac{\delta_{2R}^+}{\sqrt{2}} \end{pmatrix} = (1,1,3,2) \;, \\ & \end{tabular} S = (1,1,1,0) \;. \end{split}$$

Superpotential:

$$\begin{split} W &= (Q_L)^T Y_Q^1 \Phi_1(Q_R) + (Q_L)^T Y_Q^2 \Phi_2(Q_R) + (L_L)^T Y_L^1 \Phi_1(L_R) + (L_L)^T Y_L^2 \Phi_2(L_R) \\ &+ (L_L)^T Y_L^3 \Delta_{2L}(L_L) + (L_R)^T Y_L^4 \Delta_{1R}(L_R) + S[\lambda_L \operatorname{Tr}(\Delta_{1L} \cdot \Delta_{2L}) + \lambda_R \operatorname{Tr}(\Delta_{1R} \cdot \Delta_{2R}) \\ &+ \lambda_3 \operatorname{Tr}(\Phi_1^T \tau_2 \Phi_2 \tau_2) + \lambda_4 \operatorname{Tr}(\Phi_1^T \tau_2 \Phi_1 \tau_2) + \lambda_5 \operatorname{Tr}(\Phi_2^T \tau_2 \Phi_2 \tau_2) + \lambda_S S^2 + \xi_F] \;, \end{split}$$

An extra R-symmetry: charges for [S]=+2, [L_L, L_R, Q_L, Q_R]=+1, and charge for all other particles=0 mo bilinear supersymmetric Higgs mass terms

Neutrino masses can arise via seesaw with Y=2 triplets.

A charge and R-parity conserving vacuum, with Δ_{1L} , Δ_{2L} inert, is

$$\langle S \rangle = \frac{v_S}{\sqrt{2}} e^{i\alpha_S} , \quad \langle \Phi_1 \rangle = \begin{pmatrix} 0 & \frac{v_1'}{\sqrt{2}} e^{i\alpha_1} \\ \frac{v_1}{\sqrt{2}} & 0 \end{pmatrix} , \quad \langle \Phi_2 \rangle = \begin{pmatrix} 0 & \frac{v_2}{\sqrt{2}} \\ \frac{v_2'}{\sqrt{2}} e^{i\alpha_2} & 0 \end{pmatrix}$$

$$\langle \Delta_{1R} \rangle = \begin{pmatrix} 0 & \frac{v_{1R}}{\sqrt{2}} \\ 0 & 0 \end{pmatrix} , \quad \langle \Delta_{2R} \rangle = \begin{pmatrix} 0 & 0 \\ \frac{v_{2R}}{\sqrt{2}} & 0 \end{pmatrix} ,$$

Choose inert left triplet Higgses, since

1) For electroweak ho-parameter at tree level

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} \qquad \begin{array}{ll} \mbox{Experimentally} & \rho = 1.0004_{-0.0004}^{+0.0003} \\ \mbox{equation} & < \Delta_{1\rm L} >, < \Delta_{2\rm L} > \mbox{ small} \end{array}$$

2) If not inert, the doubly charged mass should result from radiative corrections. Difficult with 1)

 $K^0 - \bar{K}^0$ mixing constrains $W_L - W_R$ mixing which is proportional to $v_i v'_i e^{i\alpha}$

$$v_S, v_{1R}, v_{2R} \gg v_2, v_1 \gg v_1' = v_2' \approx 0$$
, choose also $\alpha_1 = \alpha_2 = \alpha_S \approx 0$

Experimentally right-handed gauge bosons are heavy: ATLAS and CMS: $m_{WR} > 2.7 \text{ TeV}$

In LRSUSY could have new decay modes alleviating the bounds; in our benchmarks new branching ratios ~10-15%, SM BR~65-70%

We will choose two benchmarks with

 m_{WR} =2.7 TeV (v_R =5.7 TeV, m_{ZR} =4.5 TeV) and other two with m_{WR} =3.5 TeV (v_R =7.5 TeV, m_{ZR} =5.9 TeV)

At the tree-level the true vacuum is not the previous charge conserving one!

The charge conserving minimum is preferred to charge violating minimum after 1-loop corrections

Babu, Mohapatra PLB 668 (2008) 404

Need to consider

$$V_{\text{eff}}^{1-\text{loop}} = \frac{1}{64\pi^2} \sum_{i} (-1)^{2s} (2s+1) M_i^4 \left[\text{Log}(\frac{M_i^2}{\mu^2}) - \frac{3}{2} \right]$$

Constraints from the Higgs sector

When triplet VEV exists, $m_{H++}^2 < 0$ at tree-level

- Need radiative corrections to find *doubly-charged Higgs* mass
 - lepton-slepton Babu, Mohapatra PLB 668 (2008) 404 gauge and Higgs sector corrections

Basso, Fuks, Krauss, Porod, JHEP 1507(2015)147

Decays H^{++/--} to leptons nonnegligible; least constraining bounds for ditaus Fix benchmarks where decay to e/μ is < 10%

(nonzero couplings because of neutrino masses)

Experimental limits for $H^{++/--}$ with 12.9 fb⁻¹ at \sqrt{s} =13 TeV :

CMS PAS HIG-16-036

*Search in: pp $\rightarrow Z^0/\gamma \rightarrow H_1^{++}H_1^{--} \rightarrow \tau^+\tau^-\tau^- \longrightarrow m_{H_1++} > 396 \text{ GeV}$

For singly charged Higgs, constraints for mass from $b \rightarrow s\gamma$, if no cancellations. For the chosen parameters, all the MSSM-like Higgses heavy.

Extra contributions to the *lightest Higgs boson* mass: at tree-level

$$m_h^2 \le \left(1 + \frac{g_R^2}{g_L^2}\right) m_{W_L}^2 \cos^2 2\beta,$$
 We assume $g_R = g_L$, $\tan \beta = \frac{v_2}{v_1}$
 $\longrightarrow m_h < 113.7 \text{ GeV}$

All other Higgs masses of the order v_R , v_S , or LH soft triplet masses

V

Constraints from neutrinos

2.3.2017

Handle on right-handed neutrinos from pp $\rightarrow | N_R \rightarrow |(| W_R^*) \rightarrow |(|jj)$ N_R Majorana \implies similar amounts of same sign and opposite sign dileptons Keung, Senjanovic, PRL 50 (1983) 1427

Katri Huitu/HPNP 2017

Other than superpotential terms in the Lagrangian:

Aim

Study sneutrino dark matter and its collider signals via benchmarks in LRSUSY Compare sneutrino and neutralino dark matter

Pseudoscalar sneutrino mass matrix

$$\begin{split} M_{\tilde{\nu}_L\tilde{\nu}_L}^2 &= m_{\tilde{L}_L}^2 + D_{11} \\ \\ M_{\tilde{\nu}_L\tilde{\nu}_R}^2 &= M_{\tilde{\nu}_R\tilde{\nu}_L}^2 = (T_L^2v + Y_L^2Y_L^4v_{1R})\sin\beta + Y_L^2\mu_{\text{eff}}\frac{v\cos\beta}{\sqrt{2}} \\ \\ M_{\tilde{\nu}_R\tilde{\nu}_R}^2 &= m_{\tilde{L}_R}^2 + D_{22} + 2(Y_L^4)^2v_{1R}^2 + \sqrt{2}T_L^4v_{1R} - Y_L^4\lambda_Rv_Sv_{2R} \end{split}$$

For λ_R large, the last term is most important $(\mu_{eff} = \lambda_3 v_s / \sqrt{2})$

Neutralino sector (left-handed triplet 2x2 mass matrix and neutral bidoublet inert 2x2 –part are separate blocks)

 $M_{\tilde{\chi}^0} =$ $-\mu_d$ μ_{eff} Adjust to 0 0 $\dot{q}_L v_d$ $-\mu_u$ have $-\mu_{\text{eff}}$ $\frac{\lambda_R v_{2R}}{\sqrt{2}}$ neutralino 0 $g'v_{1R}$ μ_R $-g_R v_1$ DM $\frac{\lambda_R v_{1R}}{\sqrt{2}}$ 0 0 $g_R v_{2R}$ μ_R $g'v_{2R}$ benchmarks $\lambda_R v_{2R}$ $\lambda_R v_{1R}$ μ_S $-\mu_d$ v_{2R} 0 M_1 v_R Large for M_{2L} 0 0 sneutrino M_{2R} 0 0 $g_R v_{1R} - g_R v_{2R}$ DM benchmarks

$$\mu_S = \lambda_S \frac{v_s}{\sqrt{2}}, \ \mu_{L,R} = \lambda_{L,R} \frac{v_s}{\sqrt{2}} \text{ and } \mu_{u,d} = \lambda_3 \frac{v_{u,d}}{\sqrt{2}}.$$

Higgsinos heavy due to large VEVs Mass of singlino dominated state depends on λ_s

2.3.2017

Katri Huitu/HPNP 2017

Benchmark parameter sets with Dark Matter in LRSUSY

To study possibilities for searches at the LHC, define

- two benchmarks with right sneutrino dark matter (BP1 and BP2)
 - two with neutralino dark matter (BP3 and BP4)

Relic density requirement: $\Omega_{DM}h^2=0.1199 \pm 0.0027$

Parameter	Value	Parameter	Value
λ_L	0.4	λ_R	0.9
λ_S	-0.5	T_R	-2 TeV
T_S	-2 TeV	T_3	$1 { m TeV}$
$M_{\Delta 1L}^2, M_{\Delta 2L}^2$	$2 { m TeV^2}$	M_3	$3.5 { m TeV}$
$(Y_L^4)_{ii}$	(0.019, 0.022, 0.10)	ξ_F	$-5000 \ { m GeV^2}$

Common parameters	$\lambda_4 =$	$\lambda_5 =$	$T_L =$	$T_4 =$	$T_5 =$	0)
-------------------	---------------	---------------	---------	---------	---------	----

Benchmark s	Benchmark specific		BP1	BP2	BP3	BP4	
		$\tan \beta$	6.5	8	7	7	
		$ an \beta_R$	1.05	1.05	1.04	1.04	
		$v_R (\text{TeV})$	5.7	7.5	5.7	7.5	
		$v_S (\text{TeV})$	7	10	7	8	
$\tan\beta = \frac{V_{2R}}{2R}$	_	λ_3	0.15	0.10	0.10	0.08	
V_{1R}		$M_{2L,R}$ (GeV)	1200	900	700	700	
						<u> </u>	
		-			K		
		Sneutrino be	enchma	arks I	Veutra	lino be	nchmarks
Low energy							
Constraints	BP1	BP2	В	P3		BP4	
${ m BR}(b o s \gamma)$	3.04 imes 10	$)^{-4}$ 3.10 × 10 ⁻¹	-4 3.	03×1	10^{-4}	3.08	$\times 10^{-4}$
${ m BR}(B_s o \mu \mu)$	2.74 imes 10	$)^{-9}$ 3.68 \times 10 ⁻⁹	⁻⁹ 3.	44×10^{-1}	10^{-9}	2.71	$ imes 10^{-9}$
Δa_{μ}	1.2×10^{-1}	$^{-10}$ 1.5×10^{-10}	¹⁰ 2	$.1 \times 1$	0^{-10}	$1.9 \times$	$< 10^{-10}$

Resulting particle spectrum

	Particle	BP1	BP2	BP3	BP4
	h	125.2	125.5	124.8	125.3
	H_2	551.1	748.5	492.4	657.9
	H_3	1958	2076	1949	2363
	A_1	551.1	748.5	492.4	657.9
	H_1^{\pm}	563.7	757.7	506.0	668.1
_	\longrightarrow $H_1^{\pm\pm}$	339.1	494.6	431.7	509.8
	$\longrightarrow W_R^{\pm}$	2668	3510	2668	3510
	Z'	4476	5889	4476	5889

	BP1	BP2	BP3	BP4	
$\Omega_{\rm DM} h^2 \sim$	0.119	0.116	0.107	0.124	
$\rightarrow \nu_{Re}$	104.2	136.8	104.7	137.6	1
$ u_{R\mu}$	120.7	158.4	121.2	159.2	
$ u_{R au}$	548.5	719.6	550.8	724.1	
$ ilde{ u}_{I au}$	266.5	271.6	416.0	299.7	
$ ilde{ u}_{Ie}$	813.8	663.6	632.2	896.3	
$ ilde{ u}_{I\mu}$	856.9	716.2	792.0	947.3	
$\tilde{\nu}_{Re}$	1301	1454	1159	1488	
$ ilde{ u}_{R\mu}$	1331	1566	1312	1590	
$\tilde{\nu}_{R\tau}$	2262	2983	2269	2742	
\tilde{e}_R	931.7	813.8	773.3	1011	
$ ilde{\mu}_R$	931.7	928.2	947.3	1105	Bino
$ ilde{ au}_R$	1399	1837	1449	1678	
$ ilde{\chi}_1^0$	731.1	609.8	61.9	62.4	
$ ilde{\chi}^{0}_{2}$	750.6	711.3	486.6	447.2	
$ ilde{\chi}_3^{0}$	750.9	716.3	501.1	459.3	
$ ilde{\chi}_1^{\pm}$	744.0	703.7	487.5	447.8	

Right-handed sneutrino dark matter (BP1, BP2)

Leading annihilation channel when there are no significant coannihilations:

Correct relic density can be found with nonresonant annihilation $250 \text{ GeV} < m_{snu} < 290 \text{ GeV}$

DM-nucleon spin independent σ < 2.5 x 10⁻¹⁰ pb

2.3.2017

Katri Huitu/HPNP 2017

Neutralino dark matter (BP3, BP4)

Take M₁ as smallest soft gaugino mass
 U(1)_{B-L} -bino-dominated LSP
 (pure gaugino, higgsino DM studied in Demir, Frank, Turan, PRD 73 (2006) 115001)

- outside resonant annihilation channels relic density is too large
 neutralino mass ~m_h/2
- Leads to BR(h $\rightarrow\chi^0\chi^0$) ~ 4 x 10⁻⁴
- Spin-independent DM-nucleon σ < 3 x 10⁻¹¹ pb, spin-dependent DM-nucleon σ < 2 x 10⁻⁶ pb

SUSYLR DM search at the LHC

Sneutrinos interact only weakly a challenge

Contrary to (N)MSSM, in LRSUSY right sneutrinos in doublets gauge interactions exist also for right-handed superpartners

Main annihilation of sneutrino DM through Higgs

main pair-production through Higgs; BUT non-resonant+small h coupling to partons $\rightarrow \sigma \sim O(ab)$

Consider resonant production through heavy W_R :

Sum over all final state sneutrinos and sleptons; Bulk of σ from on-shell W_R

$M_{WR} \sim$	2.7	3.5	2.7	3.5 Te\	/
	BP1	BP2	BP3	BP4	
$\sigma(pp \to W_R)$ (fb)	245	38	245	38	
$BR(W_R \to \tilde{\nu}_{I\tau} \tilde{\ell}_{\tau})$	0.52%	0.52%	0.38%	0.61%	
$\mathrm{BR}(W_R \to \tilde{\nu}_{Ie} \tilde{\ell}_e)$	0.64%	1.06%	0.80%	0.82%	
$BR(W_R \to \tilde{\nu}_{I\mu}\tilde{\ell}_{\mu})$	0.60%	0.98%	0.57%	0.74%	
$\mathrm{BR}(W_R \to \tilde{\nu}_{Re} \tilde{\ell}_e)$	0.21%	0.60%	0.42%	0.47%	
${ m BR}(W_R o \tilde{\nu}_{R\mu} \tilde{\ell}_{\mu})$	0.24%	0.47%	0.19%	0.36%	
$\sigma \times \sum \text{BR}(W_R \to \tilde{\nu}\tilde{\ell}) \text{ (fb)}$	5.4	1.4	5.8	1.1	$\sqrt{s} = 13$

3 TeV

BP2,4 : Smaller σ , larger BR; Harder p_{τ} expected

Relevant number of events with 100 fb⁻¹

may lead to useful final state

For the **lightest sneutrino**, we find:

BP2, 3, 4:
$$\tilde{l}_i \rightarrow l_i + \chi_1^0$$
 almost 100%; BP2 (\tilde{v} LSP): χ_1^0 decays invisibly

BP1:
$$\tilde{l}_i \rightarrow l_i + \chi_1^0$$
 30%; $\tilde{l}_i \rightarrow l_i + \chi_5^0$ 70%;Bino dominatedhiggsino dominated $\chi_5^0 \rightarrow \chi_1^{\pm} (\rightarrow \text{LSP} + \tau^{\pm}) + W^{\mp}$ 100%

These decays lead to the following final states:

BP2, 3, 4:
$$pp \to W_R \to \sum \tilde{l} \quad \tilde{v} \to 1/+ \not{\!\!\!E}_{\tau}$$

BP1: $pp \to W_R \to \sum \tilde{l} \quad \tilde{v} \to 1/+ \not{\!\!\!E}_{\tau}$ or $1/+\tau + W + \not{\!\!\!E}_{\tau}$ enriched

Heavier sneutrinos decay to chargino and e/ μ around 50% decays include energetic e or μ

In the analysis concentrate on electrons and muons

2.3.2017

Katri Huitu/HPNP 2017

Initial requirements:

-Pseudorapidity < 2.5
-Delta(R) > 0.4 (> 0.5 for jets)
-Missing transverse energy > 200 GeV
-No isolated photons with p_T > 10 GeV
-No b-tagged jets (reduces number of top-events)

Signal consists of leptons and missing energy from heavy superpartners expect

*tranverse mass
*missing transverse momentum
*transverse momentum of the leading lepton

to be much harder than in the background

BP3,4: mass gap between charged sleptons and LSP larger than in PB1,2

	BP1	BP2	BP3	BP4	diboson	top-antitop	Drell-Yan
Preselection	216	83	299	45	2065	7192	5.94×10^5
$M_T(\ell_1, \not\!\!\!E_T) > 250 \text{ GeV}$	153	77	279	42	521	708	142
$p_T(\ell_1) > 100 \text{ GeV}$	134	75	274	42	440	559	124
${\not\!\! E}_T>250~{\rm GeV}$	113	67	258	40	229	149	69
	_	•		1.0.6		a a 1	

Leads to sensitivities: 5σ 3σ 11σ 1.86σ with 100 fb⁻¹

LRSUSY sleptons accessible with 50 fb⁻¹ upto 800 GeV if $m_{WR} \sim 3$ TeV

	BP1	BP2	BP3	BP4	diboson	top-antitop
$n_{\ell} \ge 2 \ p_T(\ell_1) > 200 \ \text{GeV}$	55	21	77	14	94	590
$p_T(\ell_2) > 40 \text{ GeV}$	50	18	66	13	72	38
$M_T(\ell_2, E_T) > 50 \text{ GeV}$	46	17	63	13	41	21

Summary

For LRSUSY sneutrino DM no specific enhancement for annihilation is needed

In sneutrino DM leptonic events enriched – turns out that can be an efficient way to differentiate between neutralino and sneutrino DM only when luminosity >> 100 fb⁻¹ neutralino DM: in 10% of events more than 2 leptons sneutrino DM: in 20-30% of events more than 2 leptons

Characteristics of SUSYLR DM sneutrino differ from singlet right sneutrino – e.g. mass of sneutrino << mass of stau

Production cross sections may be enhanced in LRSUSY if W_R is not heavier than around 3 TeV