
2017
edition

Supervisers: Eric Chabert,
Eric Conte

Computing session 1

C++ model for the electromagnetic barrel calorimeter

of the CMS (Compact Muon Solenoid) detector

Abstract:
This computing session is dedicated to the �rst notions of oriented-object programming. The
physics topic chosen for the exercise is the electromagnetic calorimeter of the CMS experiment.
In a �rst part, the students are invited to program a C++ model of the calorimeter from UML
(Uni�ed Modeling Language) diagrams. The developed code must describe the apparatus
geometry, read data acquired by all cells and correct these data with calibration settings. The
second part of the session consists in equipping the programming project with a make�le-based
compilation and with an automatically generated documentation.

Pedagogical goals:

C++ language • Writing new classes from UML diagrams.

• Instantiating objects from classes and initializing them.

• Reading and adapting an existing piece of code.

• Improving the robutness of the code in order to prevent ab-
normal termination or unexpected actions.

Collaboration work • Respecting a given set of programming rules and conventions.

• Generating automatically the reference documentation re-
lated to the code with Doxygen.

Compiling/linking • Creating an executable �le from a simple source �le.

• Compiling and linking a project made up of several source
�les: in a manual or automated (Make�le) way.

Requirements:

• Concept of class in C++, including constructors, destructor, mutators, accessors, ...

• Some particular C++ points: I/O access, arrays, pointers/references.

1 / 24

Contents

I Introduction to the ESIPAP computing sessions 3

1 Foreword 4

2 The ESIPAP framework 5
2.1 Launching the Windows machine . 5
2.2 Accessing the Linux virtual machine . 5
2.3 Setting the environment . 6
2.4 Saving your work on a share disk . 6

II Getting started with GNU g++ 8

3 First program 9
3.1 Programming conventions . 9
3.2 Main program source . 9
3.3 Building the main program . 10
3.4 Work to do . 10

III C++ model for the CMS calorimeter 12

4 Physics context 13
4.1 The CMS detector . 13
4.2 CMS coordinates systems . 13
4.3 The electromagnetic calorimeter of the CMS detector 14
4.4 Layout and mechanics of the barrel calorimeter 14
4.5 Data acquisition by a calorimeter cell . 14

5 Description of a calorimeter 16
5.1 Speci�cations . 16
5.2 First work to achieve . 17
5.3 Enriching the class CaloCell . 17

6 Description of a supermodule and a barrel 19
6.1 Implementation of caloSupermodule class . 19
6.2 Implementation of caloBarrel class . 20
6.3 First work to achieve . 21
6.4 Enriching the classes . 21

7 Setting the calorimeter cells with input �les 23
7.1 Reading an input text �le . 23
7.2 Input �le related to calibration settings . 23
7.3 Input �le related to events . 24

2 / 24

Part I

Introduction to the ESIPAP computing

sessions

3 / 24

1 Foreword

Computing sessions belong to the educational program of the ESIPAP (European School in
Instrumentation for Particle and Astroparticle Physics). Their goal is to teach the secrets of
C++ programming through practical work in the context of high energy physics. The session
is designed to be pedagogical. It is advised to read this document section-by-section. Indeed,
except the Physics context, each section of the document is a milestone allowing to acquire
computing skills and to validate them. The sections related to C++ programming are ranked
in terms of complexity. In order to facilitate the reading of this document and to measure his
progress, the student must �ll up the dedicated roadmap which includes a check-list and
empty �elds for personal report.

In the document, some graphical tags are used for highlighting some particular points. The list
of tags and their description are given below.

The student is invited to perform a pratical work by
writing a piece of code following some instructions.

Analyzing or interpreting task is requested and the re-
sults must be reported in the roadmap.

Some additional information is provided for extend-
ing the main explanations. It is devoted to curious stu-
dents.

A piece of advice is given to help the student in his
task.

4 / 24

2 The ESIPAP framework

The practical works must be performed on devoted machines where all required software are
properly installed. The user will �nd below all the instructions for setting the environment at
each beginning of session.

2.1 Launching the Windows machine

You must choose a computer in the computing room, spot its name and check that no peripheral
is missing (mouse, keyboard, ...). Then boot it and login to the Windows operator system
(supervisors will provide the password access).

2.2 Accessing the Linux virtual machine

The practical sessions will be achieved on a Linux machine for pedagogical motivations. You
must connect a virtual machine. First click on the "Start" button, i.e. the button with the
Windows logo, located on the bottom left of the screen (see Figure 1).

Figure 1: The Windows Start button

According to Figure 2, click on the virtual machine called "ESIPAP_slc6". A password could
be necessary and should be supplied by the supervisors.

Figure 2: The screen showing the available virtual machines

5 / 24

2.3 Setting the environment

To load the work environment, you can issue the command below at the shell prompt.

bash$source /home/esipap/tools/setup.sh

If the system is properly installed, the version of each tool to study should be displayed at the
screen like below. If you have an error, please call the supervisors.

--

ESIPAP environment

--

- GNU g++ version 4.9.1

- ROOT version 6.06/00

- Geant4 version 10.2.0

--

You must work in your local folder. Of course, it is advised to create one folder for each practical
session like: session1, session2, session3 and session4. Do not overwrite or remove �les
that you wrote in a previous session.

2.4 Saving your work on a share disk

Your work will be evaluated from the the piece of code that you wrote. At the end of each
session you must save your production on a share disk. The virtual machine is equipped with
one share disk called "ESIPAP-SHARE" and saved everyday. For accessing this disk, click on
the Linux tab named "places" according to Figure 3 and select the disk "ESIPAP-SHARE".

Figure 3: The Linux tab named "places"

6 / 24

After entering a password, the list of all connected machines in the room is displayed (see
Figure 4). Select the folder corresponding to your machine and put there all you work. Please
organize this folder by creating one folder for each practical session like: session1, session2,
session3 and session4.

Figure 4: List of all available machines in the room

7 / 24

Part II

Getting started with GNU g++

8 / 24

3 First program

In this section, a very simple example of main program (the so-called hello world example) is
supplied and explained in order to help beginners in C++ programming. More experimented
students should be a little patient: challenging tasks are coming soon.

3.1 Programming conventions

This is a non-exhaustive list of recommendations for CMS software developpers. In the context
of the exercise, the students must respect as much as possible these conventions in their source
�les.

• One source �le and one header �le per class. Naming rules: class name + su�x (.cpp or
.h)

• Start method names with lower case. Use upper case initials for following words. Example:
collisionPoint()

• Start data member names with lower case. User upper case initials for following words.
Use "_" character at the end of the name. Example: collisionPoint_

• Do not use single character names, except for loop indices.

• Protect each header �le from multiple inclusion with:

#ifndef className_h

#define className_h

...

#endif

• Header �les must not contain any implementation except for class templates and code to
be inlined.

• Classes must not have public data members.

• Do not use global data.

• Use "0" not "NULL".

• Use C++ casts, not C-style casting.

• Keep the ordering of methods in the header �le and in the source �le identical.

• Limit line length to 120 character positions.

3.2 Main program source

The main program will be contained in a source �le called main.cpp. A simple example
respecting fully the CMS programming rules is done is. It displays at the screen the message
"Hello World!".

9 / 24

1 // STL headers

2 #include <iostream >

3 using namespace std;

4

5 // Main program

6 int main(int argc , char** argv)

7 {

8 // Display messages at screen

9 cout << "Hello World!" << endl;

10

11 // Normal program termination

12 return 0;

13 }

Listing 1: A �rst main program

3.3 Building the main program

To build with g++ compiler an executable �le from main.cpp �le, the simpliest command to
type at the shell prompt is:

bash$g ++ main.cpp

If the main.cpp �le compiles properly, an executable �le with the default name a.out is created.
Of course, we invite the students to use g++ in more advanced way by adding three items:

• giving a proper name to the executable program

• splitting the complation step from the linking step

• specifying some compilation options

To avoid retyping several times during the session the building commands, a shell script can
be written. This is an example of a such �le called mymake:

1 gcc -W -Wall -ansi -pedantic -o main.o -c main.cpp

2 gcc -o main main.o

Listing 2: A �rst building script

It is necessary to make this script executable before launching it.

bash$chmod +x mymake

3.4 Work to do

• Recopy the content of the main.cpp and mymake �les.

• Build the program and test that the "hellow world" mes-
sage appears properly when you launch the executable.

10 / 24

• Explain the compilation options used for generating the
object �le main.o.

11 / 24

Part III

C++ model for the CMS calorimeter

12 / 24

4 Physics context

4.1 The CMS detector

CMS(Compact Muon Solenoid) is one of the four main detectors build for analyzing particles
produced by proton-proton collisions at the LHC (Large Hadron Collider). The detector is
buried under about 100m at the point 5 of LHC ring. With a weight of 12500 tons, it has
cylinder volume with a diameter of 14.6 m and a length of 21.6 m. The LHC beam cross the
detector in its axis and the collisions occur in its middle. CMS is made up of several detector
components: a silicon tracker equipped with a huge solenoid magnet, electromagnetic
and hadronic calorimeters and �nally ionizing chambers devoted to muon tracking. The
�gure below allows to distinguish the di�erent components.

Figure 5: A perspective view of the CMS detector

The �rst run of data taking has begun since Fall 2008. It is designed to undergo 40 millions
of proton-proton collisions per second. All collisions (we speak later in term of events) are not
interested for the physicists and a trigger system selects in real-time the most relevant one.
The data�ow is reduced to about 300 collisions per second.

4.2 CMS coordinates systems

It is important to remind the cartesian and cylindrical coordinates systems used in the CMS
collaboration. The both coordinate systems has the origin centered at the nominal collision
point inside the experiment.

• cartesian. The y-axis pointing vertically upward, and the x-axis pointing radially
inward toward the center of the LHC. Thus, the z-axis points along the beam direction
toward the Jura mountains from LHC Point 5.

• cylindrical. The azimuthal angle φ is measured from the x-axis in the x-y plane and
the radial coordinate in this plane is denoted by r. The polar angle θ is measured from

13 / 24

the z-axis. Pseudorapidity η = −ln tan θ
2
is usually used instead of θ.

4.3 The electromagnetic calorimeter of the CMS detector

The aim of the electromagnetic calorimeter is to measure the energy of photons and electrons
produced during the collisions. At high energies, electromagnetic particles induce electromag-
netic shower when they interact with the calorimeter material. Loss energy is converted to
light due to scintillating property of the material: lead tungstate (PbWO4) crystals with a
short radiation length X0 = 0.89 cm and a short Moliere radius equal to 2.2 cm. The CMS
electromagnetic calorimeter is hermetic, homogeneous and compact. It covers the full range in
azimuthal angle and the pseudorapidity range |η| < 1.48. The cells have a size of 22×22 mm2

at the front face and a length of 230 mm corresponding with 25.8 X0. The electromagnetic
calorimeter is compound of two di�erent geometries:

• the cylinder part, called barrel, has a radius of 1.29 cm and contains 61,200 cells.

• the two planes at each end of the cylinder (z=-1 m and z=+1 m), called end-cap, contain
together 14,648 cells.

Barrel

E
n
d
-C
ap

E
n
d
-C
ap

z

1.29m

z=-3m z=+3m

Figure 6: Barrel and End-cap part of the calorimeter in the transverse plane of the detector

Only the barrel part of the calorimeter is considered in the following.

4.4 Layout and mechanics of the barrel calorimeter

The cells are gathered in submodules; submodules are gathered in modules ; modules are
gathered in supermodules. For simplifying the exercise, only the last structure is considered.
There are 36 supermodules and one supermodule contains 25 × 68 cells. Their layout in the
η − φ plane is shown by the �gure below.

4.5 Data acquisition by a calorimeter cell

For the sake of completness, the acquisition chain of a calorimeter cell is brie�y discussed.
The scintillator crystals emit blue-green scintillation light which is collected by photodetectors
(Avalanche PhotoDetectors). The signal is shaped by a MGPA (Multi-Gain Pre-Ampli�er) and
digitized by an ADC (Analogic Digital Converter). After an adaptation of the signal, the signal
is sent to a Front-End electronics board which computes some information useful for the �rst
level of trigger. If the trigger is �red, digital data are sent to the DAQ (Data AcQuisition).
The energy resolution can be parametrized as in the equation:(σ

E

)2

=

(
S√
E

)2

+

(
N

E

)2

+ C2

14 / 24

→ phi

eta

+1.48

-1.48

0

360°

+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18

Figure 7: Subdivision of the calorimeter barrel in supermodules

phi

eta

+1.48

0
20°

...

... 68 cells

25 cells

Figure 8: Subdivision of the supermodules in cells

Figure 9: Simpli�ed schematics of the calorimeter cell readout

where S is the stochastic term, N the noise term, and C the constant term. Typical values are
S=2.8%, N=0.12 and C=0.30% for E in GeV.

15 / 24

5 Description of a calorimeter

In this section, a class called caloCell, corresponding to the �les called CaloClass.h and
CaloClass.cpp, must be written. This class must describe the status of each cell of the barrel
calorimeter. Therefore 61,200 instances of this class are expected.

5.1 Speci�cations

Here are enumerated the functionalities of the class caloCell.

• The class must contain an identi�cation code corresponding to its relative position in
the supermodule. This can be done by two positive integer called etaPosition_ and
phiPosition_.

• The class must store the raw energy (rawEnergy_) coming directly from the DAQ.

• The class must also store calibration settings:

� o�set: real value to subtract to the raw energy.

� gain: multiplicative value (de�ned as a strictly positive real).

� boolean mask: if the mask is enable, a veto is applied to the cell (describing dead
cell).

• A function called getEnergymust return the corrected energy value following the formula:{
if mask=true → energy* = 0.
if mask=false → energy* = (energy - o�set)× gain

• A function called getResolution must return the resolution value expected for the cur-
rent corrected energy value. The formula is given in section "Physics context".

• In order to access all data members of the class, accessor (or getter) and mutator (or
setter) functions must be de�ned. We choose the conventions that the name of these
functions begin either by get either by set.

• A function called print allows to display at the screen the current values of the data
members of the class.

• Two constructors will be implemented for this class: one constructor with no argument
where data members will be initialized to the default values and a second constructor
with some arguments (etaPosition, phiPosition, mask, o�set, gain, energy).

• A function called clear allows to reinitialize all the data members.

The UML diagram corresponding to the class caloCell is supplied below.

16 / 24

caloCell
-mask_: bool = false
-rawEnergy_: double = 0.
-gain_: double = 0.
-offset_: double = 0.
-etaPosition_: unsigned int = 0
-phiPosition_: unsigned int = 0

+caloCell()
+caloCell(in etaPosition:unsigned int,in phiPosition:unsigned int,
 in mask:bool,in offset:double,in gain:double,
 in energy:double)
+~CaloCell()
+getMask(): bool const
+getRawEnergy(): double
+getGain(): double
+getOffset(): double
+getEtaPosition(): unsigned int
+getPhiPosition(): unsigned int
+getEnergy(): double
+getResolution(): double
+setMask(in mask:bool): void
+setRawEnergy(in energy:double): void
+setGain(in gain:double): void
+setOffset(in offset:double): void
+setEtaPosition(in eta:unsigned int): void
+setPhiPosition(in phi:unsigned int): void
+print(): void
+clear(): void

Figure 10: UML diagram of the class caloCell

5.2 First work to achieve

• Implement the class caloCell according to the UML dia-
gram.

• Test the class de�nition by instantiating an object and by
performing some operations.

• Adapt the script mymake for building this project.

• Explaining how you test the implementation of caloCell.

5.3 Enriching the class CaloCell

We suggest to improve the implementation of the class caloCell by advanced functionalities.
These functionalities are not crucial for the next developments. Their goal is totally pedagogical.

17 / 24

• Add a copy constructor to the class.

• Associate the reserved word const to the appropriated
functions.

• Overload the operator � to display the data member values
when std::cout is applied directly to instance of this class.

• Have you other ideas (new function, optimization, ...) for
improving the implementation of the class?

18 / 24

6 Description of a supermodule and a barrel

For modeling the electromagnetic barrel calorimeter, we would like to implement the two
classes caloSupermodule and caloBarrel, corresponding to the �les caloSupermodule.h,
caloSupermodule.cpp, caloBarrel.h and caloBarrel.cpp. The implementation will be
based on the supplied UML diagrams. We would like to have the most general and �exible
classes as possible. For instance, the supermodule segmentation will be not �xed, but tunable
by the user.

6.1 Implementation of caloSupermodule class

Here are enumerated the functionnalities of the class caloSupermodule.

• The class must contain a identi�cation code corresponding to the supermodule position
in the supermodule. This can be done by a signed integer called Id_.

• The class must store an array of caloCell. The data members nPhi_ and nEta_ mean
the number of cells respectively in φ and η direction.

• In order to access all data members of the class, accessor (or getter) and mutator (or setter)
functions must be de�ned. We choose the conventions that the name of these functions
begin either by get either by set. Of course, changing nPhi_ and nEta_ implies changing
the array dimension.

• A function called print allows to display at the screen the iden�cation number and the
array size.

• Two constructors will be implemented for this class: one constructor with no argument
where data members will be initialized to the default values and a second constructor
with some arguments (identi�cation number, nEta, nPhi).

• A function called clear allows to reinitialize all the data members.

• A function called getCell allows to access, via a pointer, a caloCell located at eta and
phi position.

The UML diagram corresponding to the class caloSupermodule is supplied below.

19 / 24

caloSupermodule
-id_: int = 0
-cells_: array = <empty array>
-nPhi_: unsigned int = 0
-nEta_: unsigned int = 0

+caloSupermodule()
+caloSupermodule(in id:int,in nEta:unsigned int,
 in nPhi:unsigned int)
+~caloSupermodule()
+getId(): int
+getNEta(): unsigned int
+getNPhi(): unsigned int
+setId(in mask:bool): void
+setId(in id:int): void
+setNEta(in nEta:unsigned int): void
+setNPhi(in nPhi:unsigned int): void
+print(): void
+clear(): void
+getCell(in etaId:unsigned int,in phiId:unsigned int): caloCell*

6.2 Implementation of caloBarrel class

Here are enumerated the functionnalities of the class CaloCell.

• The class must store an array of caloSupermodule. The data member nSupermodule_
mean the number of supermodules.

• In order to access all data members of the class, accessor (or getter) and mutator (or
setter) functions must be de�ned. We choose the conventions that the name of these
functions begin either by get either by set. Of course, changing nSupermodule_ implies
changing the array dimension.

• A function called print allows to display at the screen the iden�cation number and the
array size.

• Two constructors will be implemented for this class: one constructor with no argument
where data members will be initialized to the default values and a second constructor
with one argument (number of supermodules).

• A function called clear allows to reinitialize all the data members.

• A function called getSupermodule allows to access, via a pointer, a caloSupermodule

with a given identi�cation number. If no caloSupermodule is found, a null pointer is
returned.

• A function called getCell allows to access, via a pointer, a caloCell located in a given
supermodule, at relative η − id and φ − id. If no caloCell is found, a null pointer is
returned.

• A function called getCellDim will give the absolute coordinate in the η − φ plane (ηmin,
φmin, ηmax and φmax) of a caloCell located in a given supermodule, at relative η− id and
φ− id.

20 / 24

The UML diagram corresponding to the class caloBarrel is supplied below.

caloBarrel
-cells_: ARRAY<caloSupermodule> = <EMPTY>
-nBarrel_: unsigned int = 0

+caloBarrel()
+caloBarrel(in nSupermodule:unsigned int)
+~caloBarrel()
+getNSupermodules(): unsigned int
+setNSupermodules(in nSupermodules:unsigned int): void
+print(): void
+clear(): void
+getSupermodule(in supermoduleId:int): caloSupermodule*
+getCell(in supermoduleId:int,in etaId:unsigned int,
 in phiId:unsigned int): caloCell*
+getCell(in supermoduleId:int,in etaId:unsigned int,
 in phiId:unsigned int,out etaMin:double,
 out phiMin:double,out etaMax:double,
 out phiMax:double): void

6.3 First work to achieve

• Implement the two classes according to the UML dia-
grams.

• Test the class de�nition by instantiating an object and by
performing some operations.

• Adapt the script mymake for building this project.

• Explaining how you test theses implementations.

6.4 Enriching the classes

Like the class CaloCell, we suggest to improve the implementation of the classes by advanced
functionnalities. These functionnalities are not crucial for the next developments. Their goal
is totally pedagogical.

21 / 24

• Add a copy constructor to the class.

• Associate the reserved word const to the appropri-
ated functions. Advice: the methods getCell and
getSupermodule will be duplicated in order to have a non-
const version and a const version.

• Overload the operator << to display the data member val-
ues when std::cout is applied directly to instance of this
class.

• Have you others ideas (new function, optimization, ...) for
improving the implementation of the class?

22 / 24

7 Setting the calorimeter cells with input �les

In the existed implementation, users can only specify the calibration settings and the raw
energy via the use of mutator (setter) functions. Initializing all the cells by this way will be
very exhaustive. That's why we suggest that the cells can be initialized directly from (already
existed) input text �les. These new functions involve some addings in the CaloBarrel class.

7.1 Reading an input text �le

In order to facilitate the life of developers, only one simple format is used for the input text
�les. The format is made up of lines and columns. The �rst line is special: it indicates the
number of rows following by the number of columns in the �les. Below a small example can be
found.

1 3 5

2 0.4 0.67 0.545 675.4 70

3 3.4 1.00 4.505 456 56

4 2.8 8.00 1.800 654 123.4

The C++ source �le �econte/ESIPAP/TP1/read.cpp is an example of reading the �le.

The students must implement a private function in the class CaloBarrel called ReadInputFile
which allows to read any �le respecting the described format. This function must take in input
argument the name of the �le and in output argument a 2-dimensionnal array �lling with the
content of the �le. It must return a boolean value which speci�es if the �le has been properly
read (true=success, false=failure).

• Analyze the C++ example and be sure you understand
this piece of code.

• Implement the function ReadInputFile in CaloBarrel class
by copy/paste/adapt the small C++ example given.

7.2 Input �le related to calibration settings

The input �le for calibration can be found here: �econte/public/ESIPAP/TP1/calibration.dat.

Except the �rst special line, each line corresponds with a calorimeter cell. The columns have
the following meaning:

column 1 column 2 column 3 column 4 column 5 column 6
supermodule id eta id phi id mask o�set gain

The students must implement a public function in the class CaloBarrel called ReadCalibration
which allows to read any �le respecting the described format and to �ll the calibration settings of
the calorimeter cells. The function takes in argument the name of the input �le and must return
a boolean value which speci�es if the �le has been properly read (true=success, false=failure).
Of course, this function will call the private function ReadInputFile.

23 / 24

• Implement the function ReadCalibration in CaloBarrel

class.

• Check manually on few cases that the function runs prop-
erly.

7.3 Input �le related to events

The input �le for one event can be found here: �econte/public/ESIPAP/TP1/event.dat.

Except the �rst special row, each row corresponds with a calorimeter cell. The columns have
the following meaning:

column 1 column 2 column 3 column 4
supermodule id eta id phi id raw energy

The students must implement a public function in the class CaloBarrel called ReadEvent

which allows to read any �le respecting the described format and to �ll the raw energy of the
calorimeter cells. The function takes in argument the name of the input �le and must return
a boolean value which speci�es if the �le has been properly read (true=success, false=failure).
Of course, this function will call the private function ReadInputFile.

• Implement the function ReadEvent in CaloBarrel class.

• Check manually on few cases that the function runs prop-
erly.

24 / 24

	I Introduction to the ESIPAP computing sessions
	Foreword
	The ESIPAP framework
	Launching the Windows machine
	Accessing the Linux virtual machine
	Setting the environment
	Saving your work on a share disk

	II Getting started with GNU g++
	First program
	Programming conventions
	Main program source
	Building the main program
	Work to do

	III C++ model for the CMS calorimeter
	Physics context
	The CMS detector
	CMS coordinates systems
	The electromagnetic calorimeter of the CMS detector
	Layout and mechanics of the barrel calorimeter
	Data acquisition by a calorimeter cell

	Description of a calorimeter
	Specifications
	First work to achieve
	Enriching the class CaloCell

	Description of a supermodule and a barrel
	Implementation of caloSupermodule class
	Implementation of caloBarrel class
	First work to achieve
	Enriching the classes

	Setting the calorimeter cells with input files
	Reading an input text file
	Input file related to calibration settings
	Input file related to events

